Cryptanalysis of Multivariate and Odd-Characteristic
HFE Variants

Luk Bettale', Jean-Charles Faage, and Ludovic Perret

INRIA, Paris-Rocquencourt Center, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France
luk.bettale@lip6.fr, jean-charles.faugere@inria.fr,
ludovic.perret@lip6.fr

Abstract. We investigate the security of a generalization of HFE (multivariate
and odd-characteristic variants). First, we propose an improved version of the
basic Kipnis-Shamir key recovery attack against HFE. Second, we generalize
the Kipnis-Shamir attack to Multi-HFE. The attack reduces to solve a MinRank
problem directly on the public key. This leads to an improvement of a factor
corresponding to the square of the degree of the extension field. We used re-
cent results on MinRank to show that our attack is polynomial in the degree of
the extension field. It appears that multi-HFE is less secure than original HFE
for equal-sized keys. Finally, adaptations of our attack overcome several variants
(i.e. minus modifier and embedding). As a proof of concept, we have practically
broken the most conservative parameters given by Chen, Chen, Ding, Werner and
Yang in 9 days for 256 bits security. All in all, our results give a more precise
picture on the (in)security of several variants of HFE proposed these last years.
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1 Introduction

Multivariate Public-Key Cryptography (MPKC) is the set of public-key schemes using
multivariate polynomials. The concept of MPKC is very appealing since its security is
related to the hardness of a post-quantum problem, namely solving a quadratic system
of algebraic equations [23]. In addition, the encryption/decryption procedures are very
efficient and can be done in constrained environments [6, 10]. Among these cryptosys-
tems, the Hidden Field Equations cryptosystem (HFE) is probably the most studied
one. It has been proposed by Patarin [29] after his cryptanalysis [28] of the historical
multivariate scheme J27]. In [26] Kipnis and Shamir proposed a key recovery attack

on HFE, which reduces to the so-called MinRank [12] problem. Although the attack
is not practical for the proposed parameters, it was conjectured to be sub-exponential.
Later, Faugre and Joux [17, 19] proposed an efficient message recovery attack based
on Gibbner bases. This attack, which iguasi-polynomidl [24], raises serious doubt
about the security of HFE. To thwart both attacks on HFE, it has been propossd to
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a multivariate system as the secret key [5] or odd-characteristic fields [14] or even both
in a recent paper [11]. This new family of schemes is called multi-HFE in the rest of
the paper.

Our contributions. We propose here a key recovery attack on HFE, multi-HFE and
some of its variants. Our attack is an adaptation and improvement of the Kipnis-Shamir
attack [26]. Precisely, we reduce the attack to the problem of finding a linear combina-
tion of the public quadratic forms of low rank. This problem is known as the MinRank
(MR) problem (MR is usually defined for matrices, but the problem can be defined
equivalently on quadratic forms). The coefficients in the linear relation that we are look-
ing for are strongly related to one of the affine transforms used to hide the (multi-)HFE
structure. We show that the MinRank can be expressed in the small field, which allows
to considerably speed-up solving by approximately a factor corresponding to the square
of the degree of the extension field. Thanks to recent results on MinRank [20, 21] and
bilinear systems [22], we conjecture that the attack is polynomial in the degree of the
extension. Using this complexity analysis, we can prove that, for the same size of keys
(a precise definition of this notion is given in Sect. 3.6), multi-HFE is always less secure
than HFE. In addition, the large number of equivalent keys allows to attack the minus
variant (this amounts to remove some equations in the public key) using the induced
degrees of freedom of the MinRank. Finally, we present an attack on the embedding
variant of (multi-)HFE. This variant consists in instantiating some variables of the pub-
lic system. However, a low rank linear combination of the quadratic forms can still be
found. In this case, solving the corresponding MinRank on truncated quadratic forms
allows us to recover only a rectangular sub matrix of the linear transform; to overcome
this difficulty we need to extend this matrix in a special way (details can be found in
Sect. 5) to make it invertible. As a proof of concept, we practically broke several param-
eters proposed in [11], supposed to have up to 256 bits security (experiments are given
in Sect. 6). We also mention that the second part of the attack of Kipnis and Shamir
as presented in [26] does not apply in characteristic 2. It is possible to overcome this
problem but due to space limitation, this will be presented in an extended version of
this paper. Consequently, we assume in the rest of the paper (thatsize of the small
field) is odd.

2 Multivariate HFE

Throughout this paper, we use the following conventions: an underlined letter denotes a
vector, e.gv = (vi,...,Vn). A capital bold font letter denotes a matrix, eMy.= [m ;].
A calligraphic capital letter denotes a general mapping,.2.9.

For Multi-HFE, the parameters considered égeN,d, D) € N*. Here,q (odd) de-
notes the size of the ground fieRy, d is the degree of the extension fi@‘qd, N is the
number of variables and equations of the secret polynomials in thé‘&&rﬁgl, s XN,
and D their degree. Throughout the paper, we use capital letters for elements rela-
tive to the big field]qu (e.g.V € Fya, F € Fo [X1,...,Xn]), and small letters for el-
ements relative t&q (€.9.vi € Fq, fi € Fq[X1,...,%n]). The secret internal transforma-
tionis.#* 1 (Vi,...,W) € (Fga)N = (F1(Va,..., W), -, Fn(V1, ..., W) € (Fga)" with
deg(F) < D. The degreé® is chosen such tha#* is easy to invert. In addition, the



polynomialsFy, ..., Ry are constructed in a specific way:

u \'A u
Fo= Aciu Xt X+ BiiuX' +Ci.
1<i<ZJ<N O@Zv«: Jv . 1<|Z<N O<%<d

q'+0'<D q'<D
From now on, we say that such systems have (multi-)HFE-shape. For convenience,
we denoten = N d. Let ¢y be the natural morphisr(ind)N — (Fg)" and.# be the

small field representation of the secret polynomigds= ¢y o .%* o ¢,gl with .7 :
(Vi,...,Vn) € (Fg)"— (f1(v1,...,Vn),- .., fa(V1,...,Vn)) € (Fq)". Due to the HFE-shape,
each polynomialf; has total degree 2. For the secret key, the mapp#igis sup-
plemented by two affine mapg’,.7 € Aff(n,IFq) represented by matricésand T
which hide the internal structure. The public k&= . o.% 0 % : (V1,...,Vn) €
(Fg)" — (91(V1,..-,Vn),---,On(V1,...,Vn)) € (Fg)" is then composed of polynomials
O1,---,0n € Fg[X1,..., %] of total degree 2.

To encrypt, we evaluatgy,...,gn in the messagen = (my,...,my) € (Fg)". With
the knowledge of the private key, the decryption of a ciphertext(cy, ..., cn) € (Fg)"
is done by computing” 1o ¢y o.F* 1o ¢,\jl 0.7 (c). As each part can be inverted
efficiently, the decryption is done efficiently.

The original HFE scheme [29] is mostly used offemwith a single univariate poly-
nomial as a secret map. It is then an instantiation of multi-HFE gith2 andN = 1.
The construction PHFE (for projected HFE) of [14] is an odd characteristic univariate
HFE that uses the embedding modifier (see Sect. 5). The scheme IFS (for Intermedi-
ate Field System) from [5] is a multi-HFE in characteristic 2 and THFE from [11] is a
multi-HFE in odd characteristic (possibly with embedding modifier). To make the de-
cryption efficient, all instances of multi-HFE withh > 1 use quadratic polynomials as
internal secret transformations. Parameters examples from the literature are given in the
tables below

gN d D security g N d D security
HFE[29] 2 1 128 513 128 IFS [5] 2 816 2 128
PHFE[14] 7 1 67 56 201 THFE [11] 31 3 10 2 150

We now review two attacks on the original HFE: the direct algebraic attack (message
recovery) of [19] and the key recovery attack of [26].

2.1 Direct Algebraic Attack

Let (cy,...,cn) € (Fg)" be a ciphertext, a message-recovery reduces to solve a system
of quadratic equations, i.¢g1 —¢1 = 0,...,0, — Cn = 0}. A classical method to solve
algebraic systems is to compute adBner basis [8, 1, 13]. The historical method for
computing Gobner bases has been proposed by Buchberger in his PhD thesis [8]. The
algorithms i [15] and K [16] by Faugere permit to improve the basic Buchberger's
algorithm. A good measure of the complexity fordBner bases is the so-calledEgree
of regularity’ of a system. This is the maximum degree of the polynomials appearing
during the computation (see [2, 3]).

It appeared [17, 19] that inverting the public key of the original HFE is much easier
than expected (i.e. in comparison to a random system of the same size). For original



HFE, the degree of regularity has been experimentally shown to be roughlblpg

(see [19]). This makes the attack sub-exponential in the number of variables. Further
analysis of the Gibner basis approach [24] confirmed this result. Note that the field
equations (i.ex‘f — X1 = ... =X1— X%, = 0) are mandatory to achieve this complexity.
Their role is to force the solutions to be only in the base figjdTo prevent a direct
algebraic attack, it has been proposed [14] to use a field with a bigger characteristic.
Field equations only intervene in degree at lepSiypically, a HFE system witlq > n
seems very hard to solve with a direct approach (feufficiently big). Note that the
hybrid approach described in [4] has been designed to solve such systems. However, for
n= 28 andq = 31 the complexity of the hybrid approach &2lt is better than a direct
solving (219) but the attack remains exponential. For multi-HFE, the situation is almost
similar. On characteristic 2, multi-HFE can still be attacked similarly. This confirms that
the algebraic attack is somehow “optimal” ol However, the direct algebraic attack
does not affect instantiations of multi-HFE with bigger odd characteristic as adding the
field equations would not be useful.

2.2 Original Kipnis-Shamir (KS) Attack

We now describe the key recovery attack proposed in [26] for the original HFE scheme
(N =1,n=d). The starting idea is to remark that polynomials of the public key — as
well as the transformation®’, .7 — can be viewed as mappings, ", 7" . Fgn — Fep
and represented by the univariate polynom@ls, T € Fqn[X]. The public key relation
then become& = ¥*(X) = 7 (F*(*(X))). Kipnis and Shamir [26] proposed in-
terpolation to recover a univariate representation of the public key. We present a more
efficient and simpler way in Sect. 3 to perform this step.

Kipnis and Shamir [26] also showed that the univariate polynomials can be written
as a ‘hon-standard quadratic forfnFor instance, we have:

n—-1n-1 P no1
G= 20 Z)gi,,-x“q = XGX!, whereX = (X,X9,...,X9 )
i=0 |=

and G = [gi j| is a symmetric matrix. Similarly, we defirfe = [f; j|] the symmetric
matrix representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that REjik< logy, (D). Indeed,
the degree of the secret polynomial is smaller tilaand the only non-zero entries
in F are fi j, if i,j <log, (D). In addition, if we write 7*71(X) = zﬂ;éthq' and
LX) = zg;gskxtf the equatiorn¢*(X) = 7*(Z#*(.*(X))) implies this so-called
“Fundamental Equatidn(see [26] for the proof).

n-1 o
4G =G’ = WFW! (1)
2,

whereW = [ ;] is a specified invertible matrix (witf ; = s‘j{i) andG** the matrix

such that itgi, j)-th entry isgﬁikyjfk. As the rank ofF is bounded, so is the rank & .
Recovering thé’s reduces to solve a MinRank problem:



MinRank (MR) in a finite fieldK
Input: n,r,k € N and matriced ,..., My € K™,
Question is there a-tuple (A1, ..., A) € KX such that Ranky X, AiM;) <.
The MinRank problem is NP-complete [9]. From an algorithmic point of view, Kipnis
and Shamir proposed to model the problem as a system of overdetermined quadratic
equations and then to solve it with the so-called relinearization method [26]. This
Kipnis-Shamir modeling — which turns to be a set of bilinear equations [21] — as well
as the so-called Minors modeling have been further studied and improved in [20, 21].
In both modelings, solving MinRank reduces to compute the solutions of a system of
structured algebraic equations.

Once they's of equation (1) are known, thg's are recovered by solving a linear
system. From (1), we see that k&f) = ker(WF) and thus ke(lG’)W = ker(F). Due
to the special shape &, the first/ = log,(D) columns of its left kernel are 0. This
gives rise to a linear system of equations/¢h — ¢) equations im? variables. Since
Wiyl j+1 = Wﬂj, Kipnis and Shamir proposed to reinterpret the equationsfyeThis
givesn/ (n—¢) equations im? variables oveiy. Solving this overdetermined system
completes the key recovery.

3 Improvement and Generalization of KS Attack

3.1 Improving the Univariate Case

To generalize the KS attack, it is convenient to interpret it as vector/matrix operations.
In this paper, we denote by Frpkhe function raising all the components of a vector

or a matrix to the poweg* in any fieldK of characteristiaj. For example Fraf{v) =
(v§k7...,v‘r‘:), for a vectorv = (vy,...,vm) € K™ and FroR(A) = [aﬂ?}, for a matrix

A =laj].
Proposition 1. Let (64,...,6h) € (Fg)" be a vector basis dfqn over Fq and M, be
the nx n matrix whose columns are the Frobenius powers of the basis:

0,00 ... 07"
v.o_ | € 65

' Con

6, 67 ... 63

We can express the morphigm: Fon — (Fg)" as

n—1

Vi (VA vE )Mt
and its inversep; * : (Fq)" — Fqn as
(V1,...,Vn) — V1, with (V1,...,Vh) = (Va,...,Vn) Mp.

Furthermore, we have that(ci\/modn)+1 =V(i+1 modn)+1-



Proof. Thei-th entry of (vq,...,vq)Mp is (Z?:le Gj)qi, theq'-th power of the repre-
sentation of vy, ..., Vy) in Fqn with respect to the basi®, ..., 6,). a

The matrixM,, allows to go back and forth from the biff4) to the small field Fg). It

can be used to have the univariate representation of the public key in a simpler way than
in [26]; we replace interpolation by matrix multiplication. For the sake of simplicity,
from now on, we consider only linear transformations and homogeneous polynomials.
What follows can easily be adapted to the affine case (as pointed in [26]).

k
Let F* be the matrix such that it§, j)-th entry isf, . . The matrixF** is the

“matrix representation” of the“-th power of the univariate polynomiel. Indeed, since
F=y"gyigfijxd+, we have

n-in-1 n—-1n-1 «

zo ZO XA = ZO ZO XA ™
i=0 = i=0 j=

Then,F9‘ = XF*xt.

Consider now the symmetric matric@3;, ..., Gp) such that; = xG;x foralli, 1 <
i <n,wherex=(x1,...,%n). Using the definition of; with the matrixM, the equation
4 =T oF o. becomes

(G,...,Gp) = (SMFOMLS .. SMF" ML S )M AT,
As T andM are invertible, we have
(G1,...,Gn) T My = (SMFOMLS .. SMF ' IMESH. (2)

In other words, we have a direct relation between the polynomials of the public key
written as quadratic forms and the secret polynorhialr more precisely its matrices
F*. From now on, we denote by the matrixT M, and W the matrix SM, and
rewrite (2) as

(Gy,...,Gn)U = (WFOW! . WF-1wt), (3)

By constructiony j11 = uﬂj andw; j11= V\/?] . Thus, we only need to know one column
of U to recover the whole matrix. By considerifg, ..., Un—l,O)t, the first column of
U, we have

n-1

Z)Uk,onH = WFOW! = WFW!. @)

k=

The equation is similar to (1), but we have not used the univariate representaon of
Here again, as the rank Bfis log, (D), so is the rank ofVFW!. Contrarily to the initial

attack,G; are the public matrices and not matrices with coefficients in the big field. This
leads to the following theorem.

Theorem 1. For HFE, recoveringU reduce to solve a MinRank with=kn and r=
Iogq(D) on the public matrice&, ..., Gn whose entries are iff.



Computing a Gobner basis of a system over a smaller figlg ihstead off'y is faster

as the cost of arithmetic operations is decreased. The expected gain is a féator M
(the cost of the multiplication of two univariate polynomials of degngever the KS
attack. In the table below, we compare the original KS Minrank attack and the new
MinRank attack on HFEN = 1) with parameters| = 31, D = 312 + 31 = 992. The
implementation used is the same as in Séct.

n 8 9 10 11 12 13 14 15 16

KS attack (ins.) 15.3 204 76.9 391 680 1969 2439 3197 13407
new attack (ins.) 0.75 1.25 2.05 4.45 880 16.9 30.2 68.503

ratio 204 163 375 879 773 117 80.8 46.7130

3.2 Attacking Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key. In multi-
HFE the degree of the univariate representation of the secret key is not bounded. This
was in fact the initial motivation for the design of IFS [5]. As a consequence, there is
no linear combination of th&** leading to a small rank, making the MinRank attack
impossible. The hidden field structure exists but it can only be unveiled by working in
the right field. To have the correct analogy with the univariate case, we introduce a new
change of basis between the small field vector spBg' and the big field vector space
(qu)'\‘.
Proposition 2. Let(6y,...,64) € (Iqu)d be a vector basis cﬂ’qd overFg. LetMy 4 be
the (n x n)-matrix such thaMy g = Diag(Mg,...,Mq). We can express the morphism
N———

N (Fq)N — (Fg)" as
(Vi W) = (Ve vE v v v
and its inversapy ' : (Fq)" — (Fa)V as
(V1,-..,Vn) — (V1, V411, - 7Vd(N—1)+1) with (V1,...,Vh) = (v1,...,Vp) M N,d-

Furthermore, we have thagm(j modd)+1 = Vid+(j+1 modd)+1-

Proof. The(d (i — 1) + j)-th entry of(v1,...,va) My g is (Z;’:lvda_l)MQg)qj. EachN

d—1

block of d values represents the vectdf,V?,..., V& 7), for all i,1 <i < N. Thus
d—1 d—1

(V- Va) Mg is (Vi Vv WG VL.V ) with respect to the basis

(64,...,64). O

Note thatM ; 4 = My which generalizes Proposition 1. Whin> 1, theg-th power of a

. . k
polynomialR; € Foa[Xs,..., Xn] is represented by the matifx = [fali/d)+(-1 modd).d|j/dl+(j-1 modd))



(this definition matches the calle= 1). Equation (3) can be generalized for multi-HFE.
Let /() = WF*%iwt, withi,1 <i <N, andj,0< j < d. We have the relation:

(le'~~7Gn) U = (Fl(o),. . .7F1(d_l), ...... aFN(0)7- . .,FN(d_l)),

Similarly to (4), as;*%% = F;, when we consider th@d)-th columns olJ for0<i <N

we have
n—1 n-1

Z)Uk,OGk+l =WF W', ..., Z)Uk.,NdeH = WFyW" )
= &

As in the univariate case, the problem of finding correct valuedJfdurns to be a
simultaneous MinRank problem.

Theorem 2. For multi-HFE, recoverindJ reduce to simultaneously solve N MinRank
problems withk=nandr=N Iogq(D) on the public matrice&1, ..., G, whose entries
are inFy.

Proof. Each polynomiaF has degree bounded By thus each variabl¥ has at most
degreeD. By construction of the matrid of Proposition 2, the only non-zero entries of
the matrixF; = F;*%C are the ones in the upper-left ll®) square of eacN diagonal

(d x d) block. The rank of; is thenNlog, (D). By construction, the rank d%*®J is
left unchanged. ad

Before discussing of the complexity of the MinRank attack for Multi-HFE, we intro-
duce equivalent keys.

3.3 About Equivalent Keys and Induced Degrees of Freedom

Two keys are equivalent if they have the same public key. The subject has already been
treated for original HFE [31, 30]. It has been shown to have (at l¢asf'(q" — 1)?)
equivalent keys. A larger number of equivalent keys in multi-HFE induces a degree of
freedom when solving the MinRank that can be used to attack the minus variant. Due to
space limitations, proofs of Propositions 3, 4, and 5 will be given in an extended version
of this paper.

Definition 1. Let(.%*,.,.7) be a multi-HFE private key with paramete(, N,
d,D). We say tha{.#*,.%’,.7") is an equivalent key if#* has a HFE-shape, and
T opnoF o to S =G =T opno.F*opylo.” (same public key).

Wolf and Preneel [31] introduced the notion of sustaining transformations which is
a couple of affine transformations#(*, #*) such that#* o #* o o7* preserves the
“shape” of #*. For HFE, the “big sustainer” (multiplication in the big field), the “addi-
tive sustainer” and the “Frobenius sustainer” keep the HFE-shape unchanged. In multi-
HFE, not only multiplication keeps the HFE-shape. We also have any affine transfor-
mation on theN variables. Thus, the two first sustainers can be generalized as follows.

Lemma 1. Let (q,N,d,D) € N* and 7" : (Fa)N — (F)N @ mapping with HFE-

shape. Let*, 2* be invertible affine transformations ov(d?qd)'\‘. Then%*o.7*o.of*
has the HFE-shape.



Proof. The only exponents occurring in a single varial§lés a power ofg. The trans-
formation.e”* mixes the variableXy, ..., Xy by affine combinations. Thus by linearity

of the Frobenius, we know that no other exponents can appear and the system keeps
its HFE-shape. Trivially, asg* only performs affine combinations of the polynomials
F1,...,n the shape is also unchanged. a

With lemma 1, we can produce HFE internal maps while keeping the same property. To
build equivalent keys, we look at these affine transformations in the smallfeld
Proposition 3. Let(#*,.,.7) be amulti-HFE private key with parametdig N,d, D).

For any invertible affine transformations™, 2* over(Iqu)N, let.s = pyo.o/* o ¢,\—,1

and B = ¢n o B* o oyt then (B0 F* o/*, o/ 107, 7 0 1) is an equivalent

key.

The following proposition gives the structure of one of these transformations in the
linear case. It has to be slightly adapted in the affine case.

Proposition 4. Let A* = [g; j| be the matrix representing a linear transformatiof*
over(Iqu)N. </* can be represented in the fiel} asA = My ¢A*M N,ld whereMy g

is the matrix of Proposition 2 and* is a matrix of Nx N blocks of Frobenius powers
of elements oh*, i.e.

0,0 Ao N-1
q q
%0 oN-1
d-1 d-1
q q
%0 aN-1
A* =
an-1,0 aN-1,N-1
q q
aN-1,0 aN-1N-1
d—1 d-1
q q
aN-1,0 aN-1N-1

In addition, for any, 0< k < d, the components polynomials @Froky 0.5 * o Froby) (X1, ..., Xn) =

_ — k
(ﬁ*(xfd k,...,X,‘\]d k))q have the same monomials & (Xy,...,Xn) but their coef-
ficients are raised to the power @ff. That is, if. #*(Xy,...,Xn) has HFE-shape, so is
(Frobg 0.7 * o Froby.«) (X1, - - ., XN)-

Proposition 5. Let(.#*,.7,.7) be a multi-HFE private key with parametdig N,d,D) €
N4 Forallk,0< k<d,

(Frobo.7* o Frohy.x, ¢n o Frolx opy o .7, 7 o ¢ o Frohy.opyt)
is an equivalent key.

According to Proposition 5, we can deriyg@— 1) other equivalent keys from any valid
private key. This refers to the so-called Frobenius sustainer of [31]. We can count the
number of equivalent keys.



Theorem 3. For any multi-HFE private key.%*, ., 7) with given parameter&y,N,d, D) €

N4, there are at leasfq® [N ! (q?N — ¢ i))2 equivalent keys coming from affine trans-
formations inAff (N, Fa).

Proof. There are exactly]; ;" ()N — (q°)') invertible (N x N)-matrices oveff .

We have to multiply this byg®)N to include the affine transformations. From Proposi-
tion 3, one can choose 2 invertible affine transformations over the big field to build an
equivalent key, thus the previous value is squared. a

This number may actually be bigger (at mdstimes) using the Frobenius sustainer.
An interesting particularity of the MinRank arising in HFE/multi-HFE is that the kernel
of the matrices in (5) is independent on which equivalent key is used up to Frobenius
transforms.

Theorem 4. Let(%*,.7,7)and(Z*,.7', 7") be equivalent multi-HFE private keys
and(G;...Gy) be the matrices of their associated public key. %6, S, andT’ be the
matrix representation of respectively, 7, ./, and 7'. LetU = T My 4 = [uijl,

K = ker(31 Ui oGi), U =T Mg = U ;] andK’ = ker(3]_o U 4Gi), then3k, 0 <

k < d,K’=Froh (K).

k
Proof. By construction of equivalent keyag, j are linear combinations of thﬂ?[ for
a givenk. Linear combinations o ; do not change the kernel. By linearity,; =

K
Se agu?; = (3 a(gui,g)q . ConsequentlyK’ = Frob (K ).

We discuss the complexity of our attack in the next section.

3.4 Complexity analysis of the attack

In this section, we study the particularities of the MinRank problems coming from (5).
Here again we consider only linear maps and homogeneous polynomials for the sake of
simplicity.

Let an instance of HFE with parametégsN, d, D) € N4, and/ = [logD]. We have
to solve the MinRank problem on thH@ x n)-matricesG; ...G, whose entries lie in
Fq with target rankN¢. Using the Kipnis-Shamir modeling described in [26, 20, 21],
it is equivalent to solve the algebraic system of thén — N¢)) bilinear equations in
(N£(n—N¢)+n) variables given by the entries of the matrix

1... xlg,l m-ngf (i;\iei), (6)

1 X-Ne1 - Xn—NeNe

Note that we are looking for solutions in the fiéfgh rather than ir¥q.

From now on, and similarly to [20], these equations are called the KS (Kipnis-
Shamir) equations. We denote b¥ks the ideal generated by the KS equations and
Yks C Fqa its associated variety.



Theorem 5. The MinRank problem associated to HFE (resp. multi-HFE) can be solved
by fixing one (resp. N) coefficients to random values. That is, the dimensiggsof
Fg[A1,...,An] is at least one (resp. N).

Proof. We know that any column df =T 1M N.d IS @ solution of MinRank fofAy, ..., An).
From Proposition 3, for any invertible matri*, the columns of the matri’ A* give

a solution(As, ..., Ap) for the MinRank. As each column & hasN non-zero entries,
this allows to choos8l coefficientsA; arbitrarily. a

This means that for valid valuegj, there are(qd)N possible vector§As, ..., Ay) such
that the kernel of 37, AiG;) is the one induced by the ;'s. Therefore, the values &f
components (sa}, . ..,An) can be randomly chosen. The new system still (me{s —
N¢)) equations but onlyN¢ (n—N¢) +n— N) variables. As described in Sect. 3.1, the
coefficients are in the small fieley,. To keep this property, we fix variables with values
over the small field. Experimentally, fixing one variable to 1 (or any value fRyn
and the(N — 1) others to O gives the best results. Affévariables(A4,...,Ay) have
been fixed;’ks has at leastl elements. This property already noticed in [25] for HFE
is a direct consequence of theorem 4. OKce: ker(Y}_; AGk) is recovered, finding
a valid transformatiot)’ is done by solving a linear system as entries of (6) become
linear. Some experimental results of our attack are presented in Sect. 6.

It is interesting to remark that the degree of regularity experimentally observed
seems to be constant whemgrows. This behavior can be explained theoretically using
the bound on the degree of regularity of MinRank given in [21].

Proposition 6 (Faugere, Safey El Din, Spaenlehauer [21])Let (n,r,k) be the pa-
rameters of a MinRank instance. L&t= [a; ;] be the(r x r)-matrix defined by g (t) =
sl (ni) ("3)t! The degree of regularity of the system associated to MinRank
instance is bounded from above by deg(HS(t)) whereHS(t) is the polynomial ob-

tained from the first positive terms of the serfés- )"~k d%t;(ﬁt).

Back to our specific MinRank problem, we have instantiate this theoretical bound with
multi-HFE parameters for values bf < 20 and? < 10. Whend, is sufficiently bigger
than?, we always obtaiiN¢ + 1) (verified forN d up to 500). Since the parametéis

not involved we state the following conjecture.

Conjecture 1.The degree of regularity of the MinRank problem associated to a multi-
HFE instance does not dependaxiiWWhend grows to infinity, it is bounded from above
by (N£+1).

The degree of regularity depends only in the nhumideof secret variables and the
degreeD of the secret polynomials. This is consistent with the observations on simple
HFE wheredieg Was observed to be I¢®). We have the necessary material to evaluate
the difficulty of MinRank involved in HFE/multi-HFE.

Proposition 7. Assuming Conjecture 1, for N ardixed, the complexity of solving the
multi-HFE MinRank problem ig7 (d(N”l) “’) (2 < w < 3 being the linear algebra

constan) and thus polynomial in d.



Proof. According to Conjecture 1, the degree of regularity M + 1) and thus in-
dependent of the degree of the extensibiWWhend grows to infinity, the complex-

ity of the Gidbner basis computation [2, 3] & ((Nd@ﬁffl) “’) ~0 ((N d)(NE+D) w) ~

Vi (d(NE+1) w) _ 0

Once the matriXd has been found with the MinRank attack, we need to recover the
matrix W.

3.5 Recovering the transformation on the variables

Kipnis and Shamir [26] originally proposed a method for this step by solving an overde-
termined system ofn¢(n— ¢)) linear equations im? variables oveifq. Applied to
multi-HFE, it would give(n/(n— N¢)) equations im? variables oveifq. We propose

here an alternative method which reduces the number of variables and equations by a
factord while it is done over the big field.

Lemma 2. Let (Gy,...,Gn) be a multi-HFE public key and = [log,(D)]. Suppose
that the matrixk = ker(33_; AkGk) hasRank3_; AkGk) = N¢. OnceK is known,
then we can recover a matri%y’ = SMy 4 such thatS' is a valid matrix for the private
key by solving a linear system @/ (n— N¢)) equations inN (n— N)) variables.

Proof. To find the coefficientsy, , it is enough to remark that from (5) one He@/’ =
ker(F;). We know by construction of the private key that Ker) hasN¢ columns
set to zero. By construction &', N columns are needed to build the whole ma-
trix. We build the corresponding linear system(d)f(n— NE)) equations inNn vari-
ables. Proposition 3 tells us that one can randomlyNfixariables on each of th
columns which give$N (n— N)) variables left. I > 1, the system is underdetermined.
To find the matrix, we have to add th{g/ — 1)N (n— N¢)) equations coming from
Frol (K)W’ = ker(Fi*®J). For j, (d — £+ 1) < j < d, it can be verified that kéF;*%)
has alsd\/ columns set to zero. The system Hal (n— N¢)) linear equations. O
Recovering the polynomial systemOnce the matrice®’ =My gU'~! andS = W’'M g}d

are recovered, we only need to reconstruct a private transformation. It is done simply
by computingZ* = ¢,\]l 07" 1o% 0.7""1o ¢n. By construction of its components,

the transformation” respects the HFE-shape.

3.6 Weaknesses of Multi-HFE Relative to the Original HFE

In order to compare instances of HFE/multi-HFE, we introduce the notion of “simi-
larity” between instances. Two similar instances share the same size of public key and
private key.

Definition 2. Two (multi-)HFE instances of resp. parametéys, N1, d1,D1) and(dz, N2, dz, D7)
are similariff q; = gz and N\d; = N»d; and I\Llogql(Dl) = Nzlong(Dz) holds.



The KS equations of two similar instances have the same number of variables and equa-
tions as the target rank is the sahiog, (D). According to the complexity of the Min-
Rank given in Proposition 7, the biggerds the harder it is to mount our attack. In
particular, the cash = 1 (original HFE) is the more resistant. This behavior has been
verified experimentally. For similar keys, choosiNg= 1 seems to be the optimal value
for security. With respect to our attack, multi-HFE is then less secure than HFE.

As a side remark, speed of decryption has to be taken into account when designing
a scheme. Choosing = 1 and a big degreP of the inner univariate polynomial can
sometimes dramatically slow down the decryption process for similar keys. Multi-HFE
construction could still be competitive if a modification can prevent attacks. To this
end, the minus modifier and the embedding modifier have been proposed. We study
these variants in the next sections.

4 Multivariate HFE -

In this section, we study a classical variant of multivariate schemes, the so-called “mi-
nus” modifier. It consists in removing some polynomials from the public key. This con-
struction is only suitable for signature as the decryption (signature generation) is not
unique.

Description. Let (#*,.,.) be a multi-HFE private key as defined in Sect. 2 with
parametergqg,N,d,D) € N*. We define the parameterc N and the projectiornr :
(Fg)"+ (Fq)"~S. The public key is the mappirg = 110 7 o ¢yt 0.7 * 0 py 0.7 viewed
as(n—s) polynomials inn variables. To signs random values frorif are appended to

a messagen= (my,...,My_s) before applying the basic decryption process. Verifying
a signature consists in its evaluatiorédn

Attack. The goal is to find a valid private key with on{y— s) public polynomials.
Usually the minus modification is enough to prevent classical attacks as some informa-
tion is missing. In particular it is the case for basic HRE=£ 1). In Sect. 3.4, we have
shown that the problem ha¢ degrees of freedom. Indeed, or{ly— N + 1) matrices

are needed to recover the kernel. This means tlsatiN, the kernel matrixK can still

be found with no additional cost. Still, the recovering step has to be adapted. We know
that there exists a vectdiy,...,An) and symmetrign x n)-matrices(my, ... ,ms) such

that
n—s S
ker AiGi+ Y An_siilmi | =K.
(iz iGi i; n-sti .)

Them;’s matrices are unknown and correspond to the removed polynomials. If we fix
N valuesA;, we still have solutions to our system. For instance(Agt ny1,-..,An) =
(£1,...,4Nn). We write

K- (T;N/\iGi +’?Zf€iGn—N+i +ii€Ns+i-i> =0. (7)

The resulting system hagn — N¢) linear equations in((n— N) +s%) variables.

The system is greatly underdetermined and hence have many solutions. To find the
correct entries, we use the following remark:



Proposition 8. For any j,0< j < d, we haverol (K) - (Zinzlf\iqui> =0.

Proof. By definition, Frob (K - (3.4 AiG;)) = 0. By linearity of the Frobenius, this is
equal to Frop(K) - (zi”:l)\iqj FroQ (Gi)>. As G; has its entries ifif4, we also have that
FI‘Ot] (Gi) =G;j. O

Solving together equations (7) and their Frobenius images forces the entmigsoof
be inFq. To avoid carrying equations of degrgé (coming from)\iq'), we add(d —
1)(n—N) new variablei/\il), ... ,/\r@,\,, ... ,Al(d_l), ... Jﬁ,_\,l)). The new system then
becomes:

n—N N-s . S ;
i J J
Froh(K)- (.Z Ai(J)Gi+iZ: I Gn,N+i+iZ: N i.i> —0,

forall j,0< j < d. Theresulting system is overdetermined and has a solutién if.. , /) #
(0,...,0). We have to solval times this linear system with different values féy, ... ., {n)

to get a valid matriXJ. With this technique, the private key of a multi-HFEan be re-
covered almost as efficiently as the standard construction if the number of withdrawn
equations is less thaiN — 1). Experimental results are presented in Sect. 6.

5 Multivariate HFE with Embedding

In [14], it has been proposed to use a variant of HFE with embedding. This so-called
PHFE construction consists in removing few variables of the public key and is claimed
to resist Kipnis-Shamir’s attack. The authors of [11] use the same modification on multi-
HFE and claim that it prevents a possible “big-field” based attack. Still, for both PHFE

and its multivariate version a key recovery attack is possible.

Description. Let (#*,.7,.7) be a multi-HFE private key as defined in Sect. 2 with
parametergqg,N,d,D) € N*. We define a new parameterc N and the embedding

p: (Fq)" "+ (Fq)" which is part of the private key. Then the public key is the map-
ping¥ = 7 o ¢|\]1 o.F*opno.S op. To encrypt a plaintext, we still evaluaté. To
decrypt, as in the standard scheme, one inverts each component separately. To simplify,
we can assume w.lo.g. that the embedding is a@ys(x1, ..., %n—r) € (Fg)" " —

(X, %n=r,0,...,0) € (Fq)". Indeed, from any embeddimmand any invertible trans-
formation.”, one can find an invertible transformatioff such that?” o p = .’ o po;

this gives equivalent keys.

Attack. The matrix representatioB; of the public key polynomials hav@ —r) rows
and columns. However, the rank Bf'_u; 0Gj1 remains bounded b logy(D) (i.e.
removing rows or columns does not increase the rank).

LetK =ker(3 Ui 0Git1). As usual a matrix)’ can still be recovered by solving
a MinRank as soon as is known. The problem appears when trying to recover the
matrix W' = SMy g4 whereS' is an equivalent matrix for the private key. By following
the method described in Sect. 3.5, we get a system haviifg — r — N¢) equations



with only N (n—r — N) variables. Let the following matrix be a solution of this linear
system

d—1 d-1
q q q
Woo Wo - Wog oo Won-1 Won1 -+ WoN_1
W/ — . . . .
d—1 d—1
a d
Wn 0 Wn_yg - Wo_g-on oo WnrN-1 Wo_r N1 - Waorno1

The matrixW’ has(n—r) rows and thus is not invertible. However, sudH needs to
be inverted in order to compute a full private key.

The first idea is to build a new invertible mati¥, by appending t&W’ a (r x n)-
matrix V = [v; j] such thatvﬂj =V j+1. The secret transformation is reconstructed by
computingG;’ = W, ~1G;W, t. As the matrixW, ! has non-zero coefficients in its
last rows, so i€5{. Since the MinRank was done over—r x n—r)-matrices, when
we finally computes ! ui 0Gi+1', monomials in the last variablé,_1,...,X,) are
mixed with the other monomials, which eventually leads to polynomials that are not in
HFE-shape (and then hard to invert). To circumvent this issue, we no longer append a
random matrix tdN’, we construct an invertible matri/, by appending vertically to
W’ the matrix

0O............01

O............0 1

We ensure the property thel; is invertible. The variableéx,_r.1,...,X,) do not ap-
pear when we buil@;’ = W, 1G;W, ™, and the rank property is preserved. The only
difference is that the relationiﬂj =W j11 only holds for alli,0 <i < n—r. The conse-

guence is tha = WM}, has coefficients in the big fielfla. Still, S’ can be inverted
and a mappingZ* with HFE-shape can be recovered. Experimental results are given
in Sect. 6.

6 Experimental results

We present some experimental results for our attacks implementedaem [7]
(V2.16-10). All the timings have been obtained on a 2.93 GHz ftgeon® CPU.
The MinRank’s have been solved using the Kipnis-Shamir modeling.

The degree of regularity experimentally observed is notggl The theoretical de-
gree of regularity is denoted m}ggo We applied our attack to the real-scale parameters
proposed in [10] (multi-HFE with embedding). They are not secure since they are prac-
tically broken (9 days for the most conservative, i.e. 256 bits claimed security). One
may get even better results using the minors modeling of MinRank andsthete-
mentation available in the FGb software [18]. The following results are obtained on the
same computer.



gtheo time mem time

g N d Dsecurity deg” \;acua MAGMA FGb Creg
31 2 15 2 150bits 3 2min27s 434 MB 21.1s 3
31 3 10 2 150bits 4 1h38min 1500MB 24min56s 3
31 3 15 2 192hits 4 2dayslh 12 GB 3
31 3 18 2 256hits 4 9daysl6h 33GB 3

We also compare the different steps of our attack to the minus and the embedding
variants for multi-HFE with parametetg= 31,N = 3,d = 8,D = 2 (=~ 120 bits secu-
rity). The minus modifier does not change the time of the MinRank attack but recovering
W will be slower. In practice, multi-HFE with the embedding takes more time to break
but the degree of regularity is tlsame.

MR time MRdeg FindingU FindingW
No variant (ref. time) 23.3s 3 0.01s 7.89

Minus (s=1) 23.2s 3 0.01s 16.71s
Minus (5= 2) 234s 3 0.01s 35.24s
Minus (s=3) Not possible

Embedding(= 1) 788 s 3 0.01s 6.14 s
Embedding(=2) 2811s 3 0.01s 5.25s
Embedding (= 3) 401 s 3 0.01s 4.44

7 Conclusion

Multi-HFE over an odd-characteristic field seems to fix the weaknesses of HFE. The
embedding modifier was also proposed to better hide the big field structure in the pub-
lic key. These properties turn out to be weaknesses. Not only does our attack allow to
do a complete key recovery in polynomial time, it is also more efficient on multi-HFE
than on original HFE. On multi-HFE, key recovery on real-size parameters becomes
practical. We broke parameter sets from [11] up to claimed 256 bits security. It is there-
fore insecure to use multi-HFE. Increasing the nunibef secret variables/equations

or their degred® may lead to a set of parameters out of reach of our attack but then,
the rightful decryption would be very slow or infeasible. With respect to our attacks,
among the studied constructions, only the minus variants of HFE/multi-HFE are secure
if the removed equations is bigger théd — 1). Note that vinegar variants of HFE are

not concerned.
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