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Abstract. We investigate the security of a generalization of HFE (multivariate
and odd-characteristic variants). First, we propose an improved version of the
basic Kipnis-Shamir key recovery attack against HFE. Second, we generalize
the Kipnis-Shamir attack to Multi-HFE. The attack reduces to solve a MinRank
problem directly on the public key. This leads to an improvement of a factor
corresponding to the square of the degree of the extension field. We used re-
cent results on MinRank to show that our attack is polynomial in the degree of
the extension field. It appears that multi-HFE is less secure than original HFE
for equal-sized keys. Finally, adaptations of our attack overcome several variants
(i.e. minus modifier and embedding). As a proof of concept, we have practically
broken the most conservative parameters given by Chen, Chen, Ding, Werner and
Yang in 9 days for 256 bits security. All in all, our results give a more precise
picture on the (in)security of several variants of HFE proposed these last years.

Keywords: Hidden Field Equations, MinRank, Gröbner bases

1 Introduction

Multivariate Public-Key Cryptography (MPKC) is the set of public-key schemes using
multivariate polynomials. The concept of MPKC is very appealing since its security is
related to the hardness of a post-quantum problem, namely solving a quadratic system
of algebraic equations [23]. In addition, the encryption/decryption procedures are very
efficient and can be done in constrained environments [6, 10]. Among these cryptosys-
tems, the Hidden Field Equations cryptosystem (HFE) is probably the most studied
one. It has been proposed by Patarin [29] after his cryptanalysis [28] of the historical
multivariate scheme C∗ [27]. In [26] Kipnis and Shamir proposed a key recovery attack
on HFE, which reduces to the so-called MinRank [12] problem. Although the attack
is not practical for the proposed parameters, it was conjectured to be sub-exponential.
Later, Faug̀ere and Joux [17, 19] proposed an efficient message recovery attack based
on Gr̈obner bases. This attack, which is “quasi-polynomial” [24], raises serious doubt
about the security of HFE. To thwart both attacks on HFE, it has been proposed touse
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a multivariate system as the secret key [5] or odd-characteristic fields [14] or even both
in a recent paper [11]. This new family of schemes is called multi-HFE in the rest of
the paper.

Our contributions. We propose here a key recovery attack on HFE, multi-HFE and
some of its variants. Our attack is an adaptation and improvement of the Kipnis-Shamir
attack [26]. Precisely, we reduce the attack to the problem of finding a linear combina-
tion of the public quadratic forms of low rank. This problem is known as the MinRank
(MR) problem (MR is usually defined for matrices, but the problem can be defined
equivalently on quadratic forms). The coefficients in the linear relation that we are look-
ing for are strongly related to one of the affine transforms used to hide the (multi-)HFE
structure. We show that the MinRank can be expressed in the small field, which allows
to considerably speed-up solving by approximately a factor corresponding to the square
of the degree of the extension field. Thanks to recent results on MinRank [20, 21] and
bilinear systems [22], we conjecture that the attack is polynomial in the degree of the
extension. Using this complexity analysis, we can prove that, for the same size of keys
(a precise definition of this notion is given in Sect. 3.6), multi-HFE is always less secure
than HFE. In addition, the large number of equivalent keys allows to attack the minus
variant (this amounts to remove some equations in the public key) using the induced
degrees of freedom of the MinRank. Finally, we present an attack on the embedding
variant of (multi-)HFE. This variant consists in instantiating some variables of the pub-
lic system. However, a low rank linear combination of the quadratic forms can still be
found. In this case, solving the corresponding MinRank on truncated quadratic forms
allows us to recover only a rectangular sub matrix of the linear transform; to overcome
this difficulty we need to extend this matrix in a special way (details can be found in
Sect. 5) to make it invertible. As a proof of concept, we practically broke several param-
eters proposed in [11], supposed to have up to 256 bits security (experiments are given
in Sect. 6). We also mention that the second part of the attack of Kipnis and Shamir
as presented in [26] does not apply in characteristic 2. It is possible to overcome this
problem but due to space limitation, this will be presented in an extended version of
this paper. Consequently, we assume in the rest of the paper thatq (the size of the small
field) is odd.

2 Multivariate HFE

Throughout this paper, we use the following conventions: an underlined letter denotes a
vector, e.g.v = (v1, . . . ,vn). A capital bold font letter denotes a matrix, e.g.M = [mi, j ].
A calligraphic capital letter denotes a general mapping, e.g.F .

For Multi-HFE, the parameters considered are(q,N,d,D) ∈ N4. Here,q (odd) de-
notes the size of the ground fieldFq, d is the degree of the extension fieldFqd , N is the
number of variables and equations of the secret polynomials in the ringFqd [X1, . . . ,XN],
and D their degree. Throughout the paper, we use capital letters for elements rela-
tive to the big fieldFqd (e.g.Vi ∈ Fqd , Fi ∈ Fqd [X1, . . . ,XN]), and small letters for el-
ements relative toFq (e.g.vi ∈ Fq, fi ∈ Fq[x1, . . . ,xn]). The secret internal transforma-
tion isF ∗ : (V1, . . . ,VN)∈ (Fqd)N 7→

(
F1(V1, . . . ,VN), . . . ,FN(V1, . . . ,VN)

)
∈ (Fqd)N with

deg(Fi) 6 D. The degreeD is chosen such thatF ∗ is easy to invert. In addition, the



polynomialsF1, . . . ,FN are constructed in a specific way:

Fk = ∑
16i6 j6N

∑
06u,v<d
qu+qv6D

Ak,i,u,
j,v

Xqu

i Xqv

j + ∑
16i6N

∑
06u<d
qu6D

Bk,i,uXqu

i +Ck.

From now on, we say that such systems have (multi-)HFE-shape. For convenience,
we denoten = N d. Let ϕN be the natural morphism(Fqd)N 7→ (Fq)n andF be the

small field representation of the secret polynomialsF = ϕN ◦F ∗ ◦ ϕ−1
N with F :

(v1, . . . ,vn)∈ (Fq)n 7→ ( f1(v1, . . . ,vn), . . . , fn(v1, . . . ,vn))∈ (Fq)n. Due to the HFE-shape,
each polynomialfi has total degree 2. For the secret key, the mappingF ∗ is sup-
plemented by two affine mapsS ,T ∈ Aff (n,Fq) represented by matricesS and T
which hide the internal structure. The public keyG = T ◦ F ◦ S : (v1, . . . ,vn) ∈
(Fq)n 7→ (g1(v1, . . . ,vn), . . . ,gn(v1, . . . ,vn)) ∈ (Fq)n is then composed of polynomials
g1, . . . ,gn ∈ Fq[x1, . . . ,xn] of total degree 2.

To encrypt, we evaluateg1, . . . ,gn in the messagem= (m1, . . . ,mn) ∈ (Fq)n. With
the knowledge of the private key, the decryption of a ciphertextc = (c1, . . . ,cn) ∈ (Fq)n

is done by computingS −1 ◦ϕN ◦F ∗−1 ◦ϕ−1
N ◦T −1(c). As each part can be inverted

efficiently, the decryption is done efficiently.
The original HFE scheme [29] is mostly used overF2 with a single univariate poly-

nomial as a secret map. It is then an instantiation of multi-HFE withq = 2 andN = 1.
The construction PHFE (for projected HFE) of [14] is an odd characteristic univariate
HFE that uses the embedding modifier (see Sect. 5). The scheme IFS (for Intermedi-
ate Field System) from [5] is a multi-HFE in characteristic 2 and THFE from [11] is a
multi-HFE in odd characteristic (possibly with embedding modifier). To make the de-
cryption efficient, all instances of multi-HFE withN > 1 use quadratic polynomials as
internal secret transformations. Parameters examples from the literature are given in the
tables below.

q N d D security

HFE [29] 2 1 128 513 128
PHFE [14] 7 1 67 56 201

q N d D security

IFS [5] 2 8 16 2 128
THFE [11] 31 3 10 2 150

We now review two attacks on the original HFE: the direct algebraic attack (message
recovery) of [19] and the key recovery attack of [26].

2.1 Direct Algebraic Attack

Let (c1, . . . ,cn) ∈ (Fq)n be a ciphertext, a message-recovery reduces to solve a system
of quadratic equations, i.e.{g1−c1 = 0, . . . ,gn−cn = 0}. A classical method to solve
algebraic systems is to compute a Gröbner basis [8, 1, 13]. The historical method for
computing Gr̈obner bases has been proposed by Buchberger in his PhD thesis [8]. The
algorithms F4 [15] and F5 [16] by Faug̀ere permit to improve the basic Buchberger’s
algorithm. A good measure of the complexity for Gröbner bases is the so-called “degree
of regularity” of a system. This is the maximum degree of the polynomials appearing
during the computation (see [2, 3]).

It appeared [17, 19] that inverting the public key of the original HFE is much easier
than expected (i.e. in comparison to a random system of the same size). For original



HFE, the degree of regularity has been experimentally shown to be roughly logq(D)
(see [19]). This makes the attack sub-exponential in the number of variables. Further
analysis of the Gr̈obner basis approach [24] confirmed this result. Note that the field
equations (i.e.xq

1− x1 = . . . = xq
n− xn = 0) are mandatory to achieve this complexity.

Their role is to force the solutions to be only in the base fieldFq. To prevent a direct
algebraic attack, it has been proposed [14] to use a field with a bigger characteristic.
Field equations only intervene in degree at leastq. Typically, a HFE system withq > n
seems very hard to solve with a direct approach (forn sufficiently big). Note that the
hybrid approach described in [4] has been designed to solve such systems. However, for
n= 28 andq= 31 the complexity of the hybrid approach is 282. It is better than a direct
solving (2115) but the attack remains exponential. For multi-HFE, the situation is almost
similar. On characteristic 2, multi-HFE can still be attacked similarly. This confirms that
the algebraic attack is somehow “optimal” overF2. However, the direct algebraic attack
does not affect instantiations of multi-HFE with bigger odd characteristic as adding the
field equations would not be useful.

2.2 Original Kipnis-Shamir (KS) Attack

We now describe the key recovery attack proposed in [26] for the original HFE scheme
(N = 1,n = d). The starting idea is to remark that polynomials of the public key – as
well as the transformationsS ,T – can be viewed as mappingsG ∗,S ∗,T ∗ :Fqn 7→Fqn

and represented by the univariate polynomialsG,S,T ∈ Fqn[X]. The public key relation
then becomesG = G ∗(X) = T ∗(F ∗(S ∗(X))). Kipnis and Shamir [26] proposed in-
terpolation to recover a univariate representation of the public key. We present a more
efficient and simpler way in Sect. 3 to perform this step.

Kipnis and Shamir [26] also showed that the univariate polynomials can be written
as a “non-standard quadratic form”. For instance, we have:

G =
n−1

∑
i=0

n−1

∑
j=0

gi, jX
qi+qj

= XGXt , whereX = (X,Xq, . . . ,Xqn−1
)

and G = [gi, j ] is a symmetric matrix. Similarly, we defineF = [ fi, j ] the symmetric
matrix representation of the secret univariate polynomial.

The Kipnis-Shamir attack is based on the remark that Rank
(
F
)
6 logq (D). Indeed,

the degree of the secret polynomial is smaller thanD and the only non-zero entries
in F are fi, j , if i, j 6 logq (D). In addition, if we writeT ∗−1(X) = ∑n−1

k=0 tkXqi
and

S ∗(X) = ∑n−1
k=0 skXqi

the equationG ∗(X) = T ∗(F ∗(S ∗(X))) implies this so-called
“Fundamental Equation” (see [26] for the proof).

n−1

∑
k=0

tkG
∗k = G′ = W̃FW̃t (1)

whereW̃ = [w̃i, j ] is a specified invertible matrix (with̃wi, j = sqi

j−i) andG∗k the matrix

such that its(i, j)-th entry isgqk

i−k, j−k. As the rank ofF is bounded, so is the rank ofG′.
Recovering thetk’s reduces to solve a MinRank problem:



MinRank (MR) in a finite fieldK
Input : n, r,k∈ N and matricesM1, . . . ,Mk ∈Kn×n.
Question: is there ak-tuple(λ1, . . . ,λk) ∈Kk such that Rank

(
∑k

i=1 λi Mi
)
6 r.

The MinRank problem is NP-complete [9]. From an algorithmic point of view, Kipnis
and Shamir proposed to model the problem as a system of overdetermined quadratic
equations and then to solve it with the so-called relinearization method [26]. This
Kipnis-Shamir modeling – which turns to be a set of bilinear equations [21] – as well
as the so-called Minors modeling have been further studied and improved in [20, 21].
In both modelings, solving MinRank reduces to compute the solutions of a system of
structured algebraic equations.

Once thetk’s of equation (1) are known, thesk’s are recovered by solving a linear
system. From (1), we see that ker(G′) = ker(W̃F) and thus ker(G′)W̃ = ker(F). Due
to the special shape ofF, the first` = logq(D) columns of its left kernel are 0. This
gives rise to a linear system of equations of`(n− `) equations inn2 variables. Since
wi+1, j+1 = wq

i, j , Kipnis and Shamir proposed to reinterpret the equations overFq. This

givesn`(n− `) equations inn2 variables overFq. Solving this overdetermined system
completes the key recovery.

3 Improvement and Generalization of KS Attack

3.1 Improving the Univariate Case

To generalize the KS attack, it is convenient to interpret it as vector/matrix operations.
In this paper, we denote by Frobk the function raising all the components of a vector
or a matrix to the powerqk in any fieldK of characteristicq. For example Frobk(v) =

(vqk

1 , . . . ,vqk

m ), for a vectorv = (v1, . . . ,vm) ∈ Km and Frobk(A) = [aqk

i, j ], for a matrix
A = [ai, j ].

Proposition 1. Let (θ1, . . . ,θn) ∈ (Fqn)n be a vector basis ofFqn overFq and Mn be
the n×n matrix whose columns are the Frobenius powers of the basis:

Mn =










θ1 θ q
1 . . . θ qn−1

1

θ2 θ q
2

...
...

...
...

θn θ q
n . . . θ qn−1

n










.

We can express the morphismϕ1 : Fqn 7→ (Fq)n as

V 7→ (V,Vq, . . . ,Vqn−1
)M−1

n

and its inverseϕ−1
1 : (Fq)n 7→ Fqn as

(v1, . . . ,vn) 7→V1, with (V1, . . . ,Vn) = (v1, . . . ,vn)Mn.

Furthermore, we have that Vq(i modn)+1 = V(i+1 modn)+1.



Proof. The i-th entry of(v1, . . . ,vn)Mn is (∑n
j=1vjθ j)qi

, theqi-th power of the repre-
sentation of(v1, . . . ,vn) in Fqn with respect to the basis(θ1, . . . ,θn). ut

The matrixMn allows to go back and forth from the big (Fqn) to the small field (Fq). It
can be used to have the univariate representation of the public key in a simpler way than
in [26]; we replace interpolation by matrix multiplication. For the sake of simplicity,
from now on, we consider only linear transformations and homogeneous polynomials.
What follows can easily be adapted to the affine case (as pointed in [26]).

Let F∗k be the matrix such that its(i, j)-th entry is f qk

i−k, j−k. The matrixF∗k is the

“matrix representation” of theqk-th power of the univariate polynomialF . Indeed, since
F = ∑n−1

i=0 ∑n−1
j=0 fi, jXqi+qj

, we have

n−1

∑
i=0

n−1

∑
j=0

f qk

i−k, j−kXqi+qj
=

n−1

∑
i=0

n−1

∑
j=0

f qk

i, j X
qi+k+qj+k

= Fqk
.

Then,Fqk
= XF∗kXt .

Consider now the symmetric matrices(G1, . . . ,Gn) such thatgi = xGixt for all i,16
i 6 n, wherex= (x1, . . . ,xn). Using the definition ofϕ1 with the matrixMn, the equation
G = T ◦F ◦S becomes

(G1, . . . ,Gn) = (SMnF∗0M t
nSt , . . . ,SMnF∗n−1M t

nSt)M−1
n T.

As T andMn are invertible, we have

(G1, . . . ,Gn)T−1Mn = (SMnF∗0M t
nSt , . . . ,SMnF∗n−1M t

nSt). (2)

In other words, we have a direct relation between the polynomials of the public key
written as quadratic forms and the secret polynomialF or more precisely its matrices
F∗i . From now on, we denote byU the matrixT−1Mn and W the matrixSMn and
rewrite (2) as

(G1, . . . ,Gn)U = (WF∗0Wt , . . . ,WF∗n−1Wt). (3)

By construction,ui, j+1 = uq
i, j andwi, j+1 = wq

i, j . Thus, we only need to know one column
of U to recover the whole matrix. By considering(u0,0, . . . ,un−1,0)t , the first column of
U, we have

n−1

∑
k=0

uk,0Gk+1 = WF∗0Wt = WFW t . (4)

The equation is similar to (1), but we have not used the univariate representation ofG .
Here again, as the rank ofF is logq(D), so is the rank ofWFW t . Contrarily to the initial
attack,Gi are the public matrices and not matrices with coefficients in the big field. This
leads to the following theorem.

Theorem 1. For HFE, recoveringU reduce to solve a MinRank with k= n and r=
logq(D) on the public matricesG1, . . . ,Gn whose entries are inFq.



Computing a Gr̈obner basis of a system over a smaller field (Fq instead ofFqn is faster
as the cost of arithmetic operations is decreased. The expected gain is a factor M(n)
(the cost of the multiplication of two univariate polynomials of degreen) over the KS
attack. In the table below, we compare the original KS Minrank attack and the new
MinRank attack on HFE (N = 1) with parametersq = 31, D = 312 + 31 = 992. The
implementation used is the same as in Sect.6.

n 8 9 10 11 12 13 14 15 16

KS attack (in s.) 15.3 20.4 76.9 391 680 1969 2439 3197 13407
new attack (in s.) 0.75 1.25 2.05 4.45 8.80 16.9 30.2 68.5103

ratio 20.4 16.3 37.5 87.9 77.3 117 80.8 46.7130

3.2 Attacking Multi-HFE

The Kipnis-Shamir attack uses the univariate representation of the public key. In multi-
HFE the degree of the univariate representation of the secret key is not bounded. This
was in fact the initial motivation for the design of IFS [5]. As a consequence, there is
no linear combination of theG∗k leading to a small rank, making the MinRank attack
impossible. The hidden field structure exists but it can only be unveiled by working in
the right field. To have the correct analogy with the univariate case, we introduce a new
change of basis between the small field vector space(Fq)n and the big field vector space
(Fqd)N.

Proposition 2. Let (θ1, . . . ,θd) ∈ (Fqd)d be a vector basis ofFqd overFq. LetMN,d be
the(n×n)-matrix such thatMN,d = Diag(Md, . . . ,Md︸ ︷︷ ︸

N

). We can express the morphism

ϕN : (Fqd)N 7→ (Fq)n as

(V1, . . . ,VN) 7→ (V1,V
q
1 , . . . ,Vqd−1

1 , . . . . . . ,VN,Vq
N, . . . ,Vqd−1

N )M−1
N,d

and its inverseϕ−1
N : (Fq)n 7→ (Fqd)N as

(v1, . . . ,vn) 7→ (V1,Vd+1, . . . ,Vd(N−1)+1) with (V1, . . . ,Vn) = (v1, . . . ,vn)MN,d.

Furthermore, we have that Vqid+( j modd)+1 = Vid+( j+1 modd)+1.

Proof. The(d(i −1)+ j)-th entry of(v1, . . . ,vn)MN,d is
(
∑d

`=1vd(i−1)+`θ`

)qj

. EachN

block of d values represents the vector(Vi ,V
q
i , . . . ,Vqd−1

i ), for all i,16 i 6 N. Thus

(v1, . . . ,vn)MN,d is (V1,V
q
1 , . . . ,Vqd−1

1 , . . . ,VN,Vq
N, . . . ,Vqd−1

N ) with respect to the basis
(θ1, . . . ,θd). ut

Note thatM1,d = Md which generalizes Proposition 1. WhenN > 1, theqk-th power of a

polynomialFi ∈Fqd [X1, . . . ,XN] is represented by the matrixFi
∗d,k = [ f qk

dbi/dc+(i−1 modd),db j/dc+( j−1 modd)]



(this definition matches the caseN = 1). Equation (3) can be generalized for multi-HFE.
Let Fi

( j) = WFi
∗d, jWt , with i,16 i 6 N, and j,06 j < d. We have the relation:

(G1, . . . ,Gn)U = (F1
(0), . . . ,F1

(d−1), . . . . . . ,FN
(0), . . . ,FN

(d−1)).

Similarly to (4), asFi
∗d,0 = Fi , when we consider the(id)-th columns ofU for 06 i < N

we have
n−1

∑
k=0

uk,0Gk+1 = WF1Wt , . . . ,
n−1

∑
k=0

uk,NdGk+1 = WFNWt . (5)

As in the univariate case, the problem of finding correct values forU turns to be a
simultaneous MinRank problem.

Theorem 2. For multi-HFE, recoveringU reduce to simultaneously solve N MinRank
problems with k= n and r= N logq(D) on the public matricesG1, . . . ,Gn whose entries
are inFq.

Proof. Each polynomialFi has degree bounded byD, thus each variableXi has at most
degreeD. By construction of the matrixM of Proposition 2, the only non-zero entries of
the matrixFi = Fi

∗d,0 are the ones in the upper-left logq(D) square of eachN diagonal

(d×d) block. The rank ofFi is thenN logq(D). By construction, the rank ofFi
∗d, j is

left unchanged. ut

Before discussing of the complexity of the MinRank attack for Multi-HFE, we intro-
duce equivalent keys.

3.3 About Equivalent Keys and Induced Degrees of Freedom

Two keys are equivalent if they have the same public key. The subject has already been
treated for original HFE [31, 30]. It has been shown to have (at least)(nq2n(qn−1)2)
equivalent keys. A larger number of equivalent keys in multi-HFE induces a degree of
freedom when solving the MinRank that can be used to attack the minus variant. Due to
space limitations, proofs of Propositions 3, 4, and 5 will be given in an extended version
of this paper.

Definition 1. Let (F ∗,S ,T ) be a multi-HFE private key with parameters(q,N,
d,D). We say that(F ∗′,S ′,T ′) is an equivalent key iffF ∗′ has a HFE-shape, and
T ′ ◦ϕN ◦F ∗′ ◦ϕ−1

N ◦S ′ = G = T ◦ϕN ◦F ∗ ◦ϕ−1
N ◦S (same public key).

Wolf and Preneel [31] introduced the notion of sustaining transformations which is
a couple of affine transformations (A ∗,B∗) such thatB∗ ◦F ∗ ◦A ∗ preserves the
“shape” ofF ∗. For HFE, the “big sustainer” (multiplication in the big field), the “addi-
tive sustainer” and the “Frobenius sustainer” keep the HFE-shape unchanged. In multi-
HFE, not only multiplication keeps the HFE-shape. We also have any affine transfor-
mation on theN variables. Thus, the two first sustainers can be generalized as follows.

Lemma 1. Let (q,N,d,D) ∈ N4 and F ∗ : (Fqd)N 7→ (Fqd)N a mapping with HFE-

shape. LetA ∗,B∗ be invertible affine transformations over(Fqd)N. ThenB∗ ◦F ∗ ◦A ∗

has the HFE-shape.



Proof. The only exponents occurring in a single variableXi is a power ofq. The trans-
formationA ∗ mixes the variablesX1, . . . ,XN by affine combinations. Thus by linearity
of the Frobenius, we know that no other exponents can appear and the system keeps
its HFE-shape. Trivially, asB∗ only performs affine combinations of the polynomials
F1, . . . ,FN the shape is also unchanged. ut

With lemma 1, we can produce HFE internal maps while keeping the same property. To
build equivalent keys, we look at these affine transformations in the small fieldFq.

Proposition 3. Let(F ∗,S ,T ) be a multi-HFE private key with parameters(q,N,d,D).
For any invertible affine transformationsA ∗,B∗ over(Fqd)N, let A = ϕN ◦A ∗ ◦ϕ−1

N

and B = ϕN ◦B∗ ◦ϕ−1
N , then

(
B∗ ◦F ∗ ◦A ∗,A −1◦S ,T ◦B−1

)
is an equivalent

key.

The following proposition gives the structure of one of these transformations in the
linear case. It has to be slightly adapted in the affine case.

Proposition 4. Let A∗ = [ai, j ] be the matrix representing a linear transformationA ∗

over (Fqd)N. A ∗ can be represented in the fieldFq asA = MN,dÃ∗M−1
N,d whereMN,d

is the matrix of Proposition 2 and̃A∗ is a matrix of N×N blocks of Frobenius powers
of elements ofA∗, i.e.

Ã∗ =





















∣
∣
∣
∣
∣
∣
∣
∣
∣

a0,0

aq
0,0

...

aqd−1

0,0

∣
∣
∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣

a0,N−1

aq
0,N−1

...

aqd−1

0,N−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

...
...∣

∣
∣
∣
∣
∣
∣
∣
∣

aN−1,0

aq
N−1,0

...

aqd−1

N−1,0

∣
∣
∣
∣
∣
∣
∣
∣
∣

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣

aN−1,N−1

aq
N−1,N−1

...

aqd−1

N−1,N−1

∣
∣
∣
∣
∣
∣
∣
∣
∣





















In addition, for anyk, 06 k< d, the components polynomials of(Frobk ◦F ∗ ◦Frobd-k)(X1, . . . ,XN)=
(
F ∗(Xqd−k

1 , . . . ,Xqd−k

N )
)qk

have the same monomials asF ∗(X1, . . . ,XN) but their coef-
ficients are raised to the power ofqk. That is, ifF ∗(X1, . . . ,XN) has HFE-shape, so is
(Frobk ◦F ∗ ◦Frobd-k)(X1, . . . ,XN).

Proposition 5. Let(F ∗,S ,T ) be a multi-HFE private key with parameters(q,N,d,D)∈
N4. For all k,06 k < d,

(
Frobk ◦F

∗ ◦Frobd-k,ϕN ◦Frobk ◦ϕ−1
N ◦S ,T ◦ϕN ◦Frobd-k◦ϕ−1

N

)

is an equivalent key.

According to Proposition 5, we can derive(d−1) other equivalent keys from any valid
private key. This refers to the so-called Frobenius sustainer of [31]. We can count the
number of equivalent keys.



Theorem 3. For any multi-HFE private key(F ∗,S ,T ) with given parameters(q,N,d,D)∈

N4, there are at least
(
qdN ∏N−1

i=0 (qdN−qd i)
)2

equivalent keys coming from affine trans-
formations inAff (N,Fqd).

Proof. There are exactly∏N−1
i=0

(
(qd)N − (qd)i

)
invertible (N×N)-matrices overFqd .

We have to multiply this by(qd)N to include the affine transformations. From Proposi-
tion 3, one can choose 2 invertible affine transformations over the big field to build an
equivalent key, thus the previous value is squared. ut

This number may actually be bigger (at mostd times) using the Frobenius sustainer.
An interesting particularity of the MinRank arising in HFE/multi-HFE is that the kernel
of the matrices in (5) is independent on which equivalent key is used up to Frobenius
transforms.

Theorem 4. Let(F ∗,S ,T ) and(F ∗′,S ′,T ′) be equivalent multi-HFE private keys
and(G1 . . .Gn) be the matrices of their associated public key. LetS, T, S′, andT′ be the
matrix representation of respectivelyS , T , S ′, andT ′. Let U = T−1MN,d = [ui, j ],
K = ker(∑n

i=0ui,0Gi), U′ = T′−1MN,d = [u′i, j ] andK ′ = ker(∑n
i=0u′i,0Gi), then∃k,06

k < d,K ′ = Frobk (K).

Proof. By construction of equivalent keys,u′i, j are linear combinations of theuqk

i,` for
a givenk. Linear combinations ofui, j do not change the kernel. By linearity,u′i, j =

∑` α`u
qk

i,` =
(

∑` α`ui,`
)qk

. Consequently,K ′ = Frobk(K). ut

We discuss the complexity of our attack in the next section.

3.4 Complexity analysis of the attack

In this section, we study the particularities of the MinRank problems coming from (5).
Here again we consider only linear maps and homogeneous polynomials for the sake of
simplicity.

Let an instance of HFE with parameters(q,N,d,D)∈N4, and` = dlogDe. We have
to solve the MinRank problem on the(n× n)-matricesG1 . . .Gn whose entries lie in
Fq with target rankN`. Using the Kipnis-Shamir modeling described in [26, 20, 21],
it is equivalent to solve the algebraic system of the(n(n−N`)) bilinear equations in
(N`(n−N`)+n) variables given by the entries of the matrix






1 x1,1 ... x1,N`

...
...

...
1 xn−N`,1 ... xn−N`,N`




 ∙

(
n

∑
i=1

λiGi

)

. (6)

Note that we are looking for solutions in the fieldFqd rather than inFq.
From now on, and similarly to [20], these equations are called the KS (Kipnis-

Shamir) equations. We denote byIKS the ideal generated by the KS equations and
VKS ⊂ Fqd its associated variety.



Theorem 5. The MinRank problem associated to HFE (resp. multi-HFE) can be solved
by fixing one (resp. N) coefficients to random values. That is, the dimension ofIKS∩
Fq[λ1, . . . ,λn] is at least one (resp. N).

Proof. We know that any column ofU = T−1MN,d is a solution of MinRank for(λ1, . . . ,λn).

From Proposition 3, for any invertible matrixA∗, the columns of the matrixUÃ∗ give
a solution(λ1, . . . ,λn) for the MinRank. As each column of̃A∗ hasN non-zero entries,
this allows to chooseN coefficientsλi arbitrarily. ut

This means that for valid valuesxi, j , there are(qd)N possible vectors(λ1, . . . ,λn) such
that the kernel of

(
∑n

i=1 λiGi
)

is the one induced by thexi, j ’s. Therefore, the values ofN
components (sayλ1, . . . ,λN) can be randomly chosen. The new system still has(n(n−
N`)) equations but only(N`(n−N`)+n−N) variables. As described in Sect. 3.1, the
coefficients are in the small fieldFq. To keep this property, we fix variables with values
over the small field. Experimentally, fixing one variable to 1 (or any value fromFq)
and the(N−1) others to 0 gives the best results. AfterN variables(λ1, . . . ,λN) have
been fixed,VKS has at leastd elements. This property already noticed in [25] for HFE
is a direct consequence of theorem 4. OnceK = ker(∑n

k=1 λkGk) is recovered, finding
a valid transformationU′ is done by solving a linear system as entries of (6) become
linear. Some experimental results of our attack are presented in Sect. 6.

It is interesting to remark that the degree of regularity experimentally observed
seems to be constant whend grows. This behavior can be explained theoretically using
the bound on the degree of regularity of MinRank given in [21].

Proposition 6 (Faug̀ere, Safey El Din, Spaenlehauer [21]).Let (n, r,k) be the pa-
rameters of a MinRank instance. LetA = [ai, j ] be the(r × r)-matrix defined by ai, j(t) =

∑n−max(i, j)
`=0

(n−i
`

)(n− j
`

)
t`. The degree of regularity of the system associated to MinRank

instance is bounded from above by1+deg(HS(t)) whereHS(t) is the polynomial ob-

tained from the first positive terms of the series(1− t)(n−r)2−k detA(t)

t(
r
2)

.

Back to our specific MinRank problem, we have instantiate this theoretical bound with
multi-HFE parameters for values ofN 6 20 and` 6 10. Whend, is sufficiently bigger
than`, we always obtain(N`+1) (verified forN d up to 500). Since the parameterd is
not involved we state the following conjecture.

Conjecture 1.The degree of regularity of the MinRank problem associated to a multi-
HFE instance does not depend ond. Whend grows to infinity, it is bounded from above
by (N`+1).

The degree of regularity depends only in the numberN of secret variables and the
degreeD of the secret polynomials. This is consistent with the observations on simple
HFE wheredreg was observed to be log(D). We have the necessary material to evaluate
the difficulty of MinRank involved in HFE/multi-HFE.

Proposition 7. Assuming Conjecture 1, for N and` fixed, the complexity of solving the

multi-HFE MinRank problem isO
(

d(N`+1)ω
) (

26 ω < 3 being the linear algebra

constant
)

and thus polynomial in d.



Proof. According to Conjecture 1, the degree of regularity is(N` + 1) and thus in-
dependent of the degree of the extensiond. Whend grows to infinity, the complex-

ity of the Gr̈obner basis computation [2, 3] isO
((Nd+N`+1

N`+1

)ω)
∼ O

(
(Nd)(N`+1)ω

)
∼

O
(

d(N`+1)ω
)

. ut

Once the matrixU has been found with the MinRank attack, we need to recover the
matrixW.

3.5 Recovering the transformation on the variables

Kipnis and Shamir [26] originally proposed a method for this step by solving an overde-
termined system of(n`(n− `)) linear equations inn2 variables overFq. Applied to
multi-HFE, it would give(n`(n−N`)) equations inn2 variables overFq. We propose
here an alternative method which reduces the number of variables and equations by a
factord while it is done over the big field.

Lemma 2. Let (G1, . . . ,Gn) be a multi-HFE public key and̀ = dlogq(D)e. Suppose
that the matrixK = ker(∑n

k=1 λkGk) hasRank(∑n
k=1 λkGk) = N`. OnceK is known,

then we can recover a matrixW′ = S′MN,d such thatS′ is a valid matrix for the private
key by solving a linear system of(N`(n−N`)) equations in(N(n−N)) variables.

Proof. To find the coefficientswi, j , it is enough to remark that from (5) one hasKW ′ =
ker(Fi). We know by construction of the private key that ker(Fi) hasN` columns
set to zero. By construction ofW′, N columns are needed to build the whole ma-
trix. We build the corresponding linear system of

(
N(n−N`)

)
equations inNn vari-

ables. Proposition 3 tells us that one can randomly fixN variables on each of theN
columns which gives(N(n−N)) variables left. If̀ > 1, the system is underdetermined.
To find the matrix, we have to add the

(
(`− 1)N(n−N`)

)
equations coming from

Frobj(K)W′ = ker(Fi
∗d, j). For j,(d− `+1)6 j < d, it can be verified that ker(Fi

∗d, j)
has alsoN` columns set to zero. The system has

(
N`(n−N`)

)
linear equations. ut

Recovering the polynomial system.Once the matricesT′ = MN,dU′−1 andS′ = W′M−1
N,d

are recovered, we only need to reconstruct a private transformation. It is done simply
by computingF ∗′ = ϕ−1

N ◦T ′−1 ◦G ◦S ′−1 ◦ϕN. By construction of its components,
the transformationF respects the HFE-shape.

3.6 Weaknesses of Multi-HFE Relative to the Original HFE

In order to compare instances of HFE/multi-HFE, we introduce the notion of “simi-
larity” between instances. Two similar instances share the same size of public key and
private key.

Definition 2. Two (multi-)HFE instances of resp. parameters(q1,N1,d1,D1) and(q2,N2,d2,D2)
aresimilar iff q1 = q2 and N1d1 = N2d2 and N1 logq1

(D1) = N2 logq2
(D2) holds.



The KS equations of two similar instances have the same number of variables and equa-
tions as the target rank is the sameN logq(D). According to the complexity of the Min-
Rank given in Proposition 7, the bigger isd, the harder it is to mount our attack. In
particular, the caseN = 1 (original HFE) is the more resistant. This behavior has been
verified experimentally. For similar keys, choosingN = 1 seems to be the optimal value
for security. With respect to our attack, multi-HFE is then less secure than HFE.

As a side remark, speed of decryption has to be taken into account when designing
a scheme. ChoosingN = 1 and a big degreeD of the inner univariate polynomial can
sometimes dramatically slow down the decryption process for similar keys. Multi-HFE
construction could still be competitive if a modification can prevent attacks. To this
end, the minus modifier and the embedding modifier have been proposed. We study
these variants in the next sections.

4 Multivariate HFE -

In this section, we study a classical variant of multivariate schemes, the so-called “mi-
nus” modifier. It consists in removing some polynomials from the public key. This con-
struction is only suitable for signature as the decryption (signature generation) is not
unique.

Description. Let (F ∗,S ,T ) be a multi-HFE private key as defined in Sect. 2 with
parameters(q,N,d,D) ∈ N4. We define the parameters∈ N and the projectionπ :
(Fq)n 7→ (Fq)n−s. The public key is the mappingG = π ◦T ◦ϕ−1

N ◦F ∗ ◦ϕN◦S viewed
as(n−s) polynomials inn variables. To sign,s random values fromFq are appended to
a messagem= (m1, . . . ,mn−s) before applying the basic decryption process. Verifying
a signature consists in its evaluation inG .

Attack. The goal is to find a valid private key with only(n− s) public polynomials.
Usually the minus modification is enough to prevent classical attacks as some informa-
tion is missing. In particular it is the case for basic HFE (N = 1). In Sect. 3.4, we have
shown that the problem hasN degrees of freedom. Indeed, only(n−N + 1) matrices
are needed to recover the kernel. This means that ifs< N, the kernel matrixK can still
be found with no additional cost. Still, the recovering step has to be adapted. We know
that there exists a vector(λ1, . . . ,λn) and symmetric(n×n)-matrices( 1, . . . , s) such
that

ker

(
n−s

∑
i=1

λiGi +
s

∑
i=1

λn−s+i i

)

= K .

The i ’s matrices are unknown and correspond to the removed polynomials. If we fix
N valuesλi , we still have solutions to our system. For instance, let(λn−N+1, . . . ,λn) =
(`1, . . . , `N). We write

K ∙

(
n−N

∑
i=1

λiGi +
N−s

∑
i=1

`iGn−N+i +
s

∑
i=1

`N−s+i i

)

= 0. (7)

The resulting system hasn(n−N`) linear equations in
(
(n−N)+ sn(n+1)

2

)
variables.

The system is greatly underdetermined and hence have many solutions. To find the
correct entries, we use the following remark:



Proposition 8. For any j,06 j < d, we haveFrobj(K) ∙
(

∑n
i=1 λ qj

i Gi

)
= 0.

Proof. By definition, Frobj
(
K ∙ (∑n

i=1 λiGi)
)

= 0. By linearity of the Frobenius, this is

equal to Frobj (K) ∙
(

∑n
i=1 λ qj

i Frobj (Gi)
)

. As Gi has its entries inFq, we also have that

Frobj (Gi) = Gi . ut

Solving together equations (7) and their Frobenius images forces the entries ofi to

be inFq. To avoid carrying equations of degreeqj (coming fromλ qj

i ), we add(d−

1)(n−N) new variables(λ (1)
1 , . . . ,λ (1)

n−N, . . . ,λ (d−1)
1 , . . . ,λ (d−1)

n−N ). The new system then
becomes:

Frobj(K) ∙

(
n−N

∑
i=1

λ ( j)
i Gi +

N−s

∑
i=1

`qj

i Gn−N+i +
s

∑
i=1

`qj

N−s+i i

)

= 0,

for all j,06 j < d. The resulting system is overdetermined and has a solution if(`1, . . . , `N) 6=
(0, . . . ,0). We have to solveN times this linear system with different values for(`1, . . . , `N)
to get a valid matrixU. With this technique, the private key of a multi-HFE− can be re-
covered almost as efficiently as the standard construction if the number of withdrawn
equations is less than(N−1). Experimental results are presented in Sect. 6.

5 Multivariate HFE with Embedding

In [14], it has been proposed to use a variant of HFE with embedding. This so-called
PHFE construction consists in removing few variables of the public key and is claimed
to resist Kipnis-Shamir’s attack. The authors of [11] use the same modification on multi-
HFE and claim that it prevents a possible “big-field” based attack. Still, for both PHFE
and its multivariate version a key recovery attack is possible.

Description. Let (F ∗,S ,T ) be a multi-HFE private key as defined in Sect. 2 with
parameters(q,N,d,D) ∈ N4. We define a new parameterr ∈ N and the embedding
ρ : (Fq)n−r 7→ (Fq)n which is part of the private key. Then the public key is the map-
ping G = T ◦ϕ−1

N ◦F ∗ ◦ϕN ◦S ◦ρ. To encrypt a plaintext, we still evaluateG . To
decrypt, as in the standard scheme, one inverts each component separately. To simplify,
we can assume w.lo.g. that the embedding is alwaysρ0 : (x1, . . . ,xn−r) ∈ (Fq)n−r 7→
(x1, . . . ,xn−r ,0, . . . ,0) ∈ (Fq)n. Indeed, from any embeddingρ and any invertible trans-
formationS , one can find an invertible transformationS ′ such thatS ◦ρ = S ′ ◦ρ0;
this gives equivalent keys.

Attack. The matrix representationGi of the public key polynomials have(n− r) rows
and columns. However, the rank of∑n

i=0ui,0Gi+1 remains bounded byN logq(D) (i.e.
removing rows or columns does not increase the rank).

Let K = ker(∑n
i=0ui,0Gi+1). As usual a matrixU′ can still be recovered by solving

a MinRank as soon asK is known. The problem appears when trying to recover the
matrix W′ = S′MN,d whereS′ is an equivalent matrix for the private key. By following
the method described in Sect. 3.5, we get a system havingN`(n− r −N`) equations



with only N(n− r −N) variables. Let the following matrix be a solution of this linear
system

W′ =







w0,0 wq
0,0 . . . wqd−1

0,0 . . . . . . w0,N−1 wq
0,N−1 . . . wqd−1

0,N−1
...

... . . .
... . . . . . .

...
... . . .

...

wn−r,0 wq
n−r,0 . . . wqd−1

n−r,0 . . . . . . wn−r,N−1 wq
n−r,N−1 . . . wqd−1

n−r,N−1





 .

The matrixW′ has(n− r) rows and thus is not invertible. However, suchW′ needs to
be inverted in order to compute a full private key.

The first idea is to build a new invertible matrixWr by appending toW′ a (r ×n)-
matrix V = [vi, j ] such thatvq

i, j = vi, j+1. The secret transformation is reconstructed by

computingGi
′ = Wr

−1GiWr
−t . As the matrixWr

−1 has non-zero coefficients in itsr
last rows, so isG′

i . Since the MinRank was done over(n− r ×n− r)-matrices, when
we finally compute∑n

i=0ui,0Gi+1
′, monomials in the last variables(xn−r+1, . . . ,xn) are

mixed with the other monomials, which eventually leads to polynomials that are not in
HFE-shape (and then hard to invert). To circumvent this issue, we no longer append a
random matrix toW′, we construct an invertible matrixWz by appending vertically to
W′ the matrix

Z =






0 . . . . . . . . . . . . 0 1
...

...
...

0 . . . . . . . . . . . . 0 1




 .

We ensure the property thatWz is invertible. The variables(xn−r+1, . . . ,xn) do not ap-
pear when we buildGi

′ = Wz
−1GiWz

−t , and the rank property is preserved. The only
difference is that the relationwq

i, j = wi, j+1 only holds for alli,06 i < n− r. The conse-

quence is thatS′ = WzM−1
N,d has coefficients in the big fieldFqd . Still, S′ can be inverted

and a mappingF ∗ with HFE-shape can be recovered. Experimental results are given
in Sect. 6.

6 Experimental results

We present some experimental results for our attacks implemented in MAGMA [7]
(V2.16-10). All the timings have been obtained on a 2.93 GHz IntelR© XeonR© CPU.
The MinRank’s have been solved using the Kipnis-Shamir modeling.

The degree of regularity experimentally observed is noteddreg. The theoretical de-
gree of regularity is denoted bydtheo

reg . We applied our attack to the real-scale parameters
proposed in [10] (multi-HFE with embedding). They are not secure since they are prac-
tically broken (9 days for the most conservative, i.e. 256 bits claimed security). One
may get even better results using the minors modeling of MinRank and the F5 imple-
mentation available in the FGb software [18]. The following results are obtained on the
same computer.



q N d D security dtheo
reg

time
MAGMA

mem
MAGMA

time
FGb

dreg

31 2 15 2 150 bits 3 2 min 27 s 434 MB 21.1 s 3
31 3 10 2 150 bits 4 1 h 38 min 1500 MB 24 min 56 s 3
31 3 15 2 192 bits 4 2 days 1 h 12 GB 3
31 3 18 2 256 bits 4 9 days 16 h 33 GB 3

We also compare the different steps of our attack to the minus and the embedding
variants for multi-HFE with parametersq = 31,N = 3,d = 8,D = 2 (≈ 120 bits secu-
rity). The minus modifier does not change the time of the MinRank attack but recovering
W will be slower. In practice, multi-HFE with the embedding takes more time to break
but the degree of regularity is thesame.

MR time MR dreg FindingU FindingW

No variant (ref. time) 23.3 s 3 0.01 s 7.29s

Minus (s= 1) 23.2 s 3 0.01 s 16.71 s
Minus (s= 2) 23.4 s 3 0.01 s 35.24 s
Minus (s= 3) Notpossible

Embedding (r = 1) 788 s 3 0.01 s 6.14 s
Embedding (r = 2) 2811 s 3 0.01 s 5.25 s
Embedding (r = 3) 401 s 3 0.01 s 4.44s

7 Conclusion

Multi-HFE over an odd-characteristic field seems to fix the weaknesses of HFE. The
embedding modifier was also proposed to better hide the big field structure in the pub-
lic key. These properties turn out to be weaknesses. Not only does our attack allow to
do a complete key recovery in polynomial time, it is also more efficient on multi-HFE
than on original HFE. On multi-HFE, key recovery on real-size parameters becomes
practical. We broke parameter sets from [11] up to claimed 256 bits security. It is there-
fore insecure to use multi-HFE. Increasing the numberN of secret variables/equations
or their degreeD may lead to a set of parameters out of reach of our attack but then,
the rightful decryption would be very slow or infeasible. With respect to our attacks,
among the studied constructions, only the minus variants of HFE/multi-HFE are secure
if the removed equations is bigger than(N−1). Note that vinegar variants of HFE are
not concerned.
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and Applied Algebra 139, 61–88 (June 1999)
16. Faug̀ere, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to
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