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Abstract. In this paper, we review and explain the existing algebraic
cryptanalysis of multivariate cryptosystems from the hidden field equa-
tion (HFE) family. These cryptanalysis break cryptosystems in the HFE
family by solving multivariate systems of equations. In this paper we
present a new and efficient attack of this cryptosystem based on fast al-
gorithms for computing Gröbner basis. In particular it was was possible
to break the first HFE challenge (80 bits) in only two days of CPU time
by using the new algorithm F5 implemented in C.
From a theoretical point of view we study the algebraic properties of
the equations produced by instance of the HFE cryptosystems and show
why they yield systems of equations easier to solve than random systems
of quadratic equations of the same sizes. Moreover we are able to bound
the maximal degree occuring in the Gröbner basis computation.
As a consequence, we gain a deeper understanding of the algebraic crypt-
analysis against these cryptosystems. We use this understanding to de-
vise a specific algorithm based on sparse linear algebra. In general, we
conclude that the cryptanalysis of HFE can be performed in polynomial
time. We also revisit the security estimates for existing schemes in the
HFE family.

1 Introduction

The idea of using multivariate quadratic equations as a basis for building public
key cryptosystems appeared with the Matsumoto-Imai cryptosystem in [18]. This
system was broken by Patarin in [20]. Shortly after, Patarin proposed to repair
it and thus devised the hidden field equation (HFE) cryptosystem in [22]. While
the basic idea of HFE is simple, several variations are proposed in [22]. As of
today, the security of HFE, especially with variations is not well understood.
Some systems have been attacked, others seem to resist. However, it is hard to
draw the boundary between secure and insecure schemes in the HFE family.

Among the known attacks, we can roughly distinguish two classes. The first
class consists of specific attacks which focus on one particular variation and
breaks it due to specific properties. Typical examples are the attack of Kipnis and
Shamir against Oil and Vinegar [14] and the attack by Gilbert and Minier [13]
against the first version of the NESSIE proposal Sflash. The second class of
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attack consists of general purpose algorithms that solve multivariate system of
equations. In this class, we find the relinearization technique of [15], the XL
algorithm [8] and also the Gröbner basis [1,2,3] approach.

The relinearization technique of Kipnis and Shamir [15] is well suited to the
basic HFE schemes without variations. The first step is to remark that some part
of the secret key is a solution of some overdefined quadratic system of equations,
with εm2 equations involving m variables. The relinearization technique can
even solve random systems as long as they are “sufficiently” overdefined. In
fact, the success of the relinearization cryptanalysis against HFE is evaluated by
estimating its complexity and success rate against random systems of the same
size.

Gröbner basis is a well established and general method for solving polyno-
mial system of equations. Of course the efficiency of this attack depends strongly
on the algorithm used for computing the Gröbner basis: the first HFE challenge
broken in section 3.4 is completely out of reach of the Buchberger algorithm
(the historical algorithm for computing Gröbner bases). With this second class
of attacks, the main difficulty is, given a set of parameters from an HFE cryp-
tosystem, to determine the attacks’ complexity.

In this paper, we show that the weakness of the systems of equations coming
from HFE instances can be explained by the algebraic properties of the secret
key. From this study we are able to predict the maximal degree occuring in the
Gröbner basis computation. This accounts well for the experimental results: we
made a series of computer simulations on real size HFE problems (up to 160
bits) so that we can establish precisely the complexity of the Gröbner attack
and we compare with the theoretical bounds.

We also devise a specific algorithm based on efficient sparse linear algebra
algorithms over F2 such as Block Lanczos. Finally, in section 5.4 and 5.1 we
give concrete security estimates for existing cryptosystems in the HFE family.

2 General Description of Multivariate Cryptosystems

The basic idea of multivariate cryptosystems from the HFE family is to build the
secret key on a polynomial S in one unknown x over some finite field (often F2n).
Clearly, such a polynomial can be easily evaluated, moreover, under reasonable
hypothesis, it can also be “inverted” quite efficiently. By inverting, we mean
finding any solution to the equation S(x) = y, when such a solution exists. The
secret transformations (decryption and/or signature) are based on this efficient
inversion. Of course, in order to build a cryptosystem, the polynomial S must
be presented as a public transformation which hides the original structure and
prevents inversion. This is done by viewing the finite field F2n as a vector space
over F2 and by choosing two linear transformation of this vector space L1 and
L2. Then the public transformation is L2 ◦ S ◦ L1.

By enforcing a simple constraint on the choice of S, this transformation
can be be expressed as a set of quadratic polynomial in n unknowns over F2.
The constraint on S is that all the monomials occuring in S should be either
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constant, of degree 2t (for some t) or of degree 2t1 + 2t2 . Indeed, if x1, . . . , xn

are the coordinates of x in some basis of F2n , we can express each coordinates
of S over F2 as a polynomial in x1, . . . , xn. In this expression into multivariate
polynomials, the constant monomial from S is translated into constants, the
monomials of degree 2t are translated into linear terms and the monomials of
degree 2t1 + 2t2 into quadratic terms. This is due to the simple fact that the
Frobenius map on F2n , i.e., squaring, is a linear transform over F2 of the vector
space F2n .

From this basic idea, we obtain a trapdoor one-way function. Indeed, the
public transformation expressed in multivariate form as:

y = (p1(x1, · · · , xn), · · · , pn(x1, · · · , xn)) ,

is easy to compute and seems hard to invert, while the secret expression in
univariate form is easy to invert when S is correctly chosen. In cryptosystems
based on HFE, S is usually a low degree polynomial, which can be inverted by
using a general purpose root finding algorithm over F2n . In some systems, such
as Sflash, we encounter an alternative construction, quite similar to RSA, where
S consists of a single monomial of degree 2t + 1, for some t. In that case, to find
a 2t +1-th root of a finite field element y, we proceed as for RSA decryption, i.e.,
we raise y to the power d, where d is the inverse of 2t+1 modulo 2n−1. However,
in that case, the basic system reduces to the Matsumoto-Imai cryptosystem [18]
which is not secure (see [20]) and thus, it should be strengthened by removing
some public equations. This strengthening operation which can also be applied
when S is a low degree polynomial is discussed in section 4.1. In the sequel, we
focus on the case where the degree D of S is small. In this case, the performance
of the cryptosystem is directly related to that of the root solving algorithm that
inverts S in F2n . To illustrate this performance, the following table reports the
time needed to find one such solution using NTL[25] (PC PIII 1 Ghz):

(n, D) (80,129) (80,257) (80,513) (128,129) (128,257) (128,513)
NTL (CPU time) 0.6 sec 2.5 sec 6.4 sec 1.25 sec 3.1 sec 9.05 sec

From these data, we conclude that for the sake of speed, the degree D of the
secret polynomial must remain quite small, say at most 512. For example, the
recommended values for the first HFE challenge are n = 80 and D = 96. For
this reason, throughout the rest of the paper, we focus on the study on HFE
cryptosystems under the assumption that D remains fixed as n grows.

3 Gröbner Basis Cryptanalysis

We refer to [5,9] for basic definitions. Let k be a field and R = k[x1, . . . , xn] the
ring of multivariate polynomials. To a system of equations

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

we associate the ideal I generated by f1, . . . , fm. A Gröbner basis is a generating
system of I that behaves nicely with respect to some order on monomials. We
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recall that a monomial in x1, . . . , xn is a term in x1, . . . , xn together a coeffi-
cient. Let < denotes, an admissible ordering on the monomials in x1, . . . , xn. A
frequentely encountered example is the lexicographical ordering which is defined
as xα1

1 · · ·xαn
n < xβ1

1 · · ·xβn
n iff αi = βi for i = 1, . . . , k and αk < βk for some k.

Then for each polynomial f in R we can define its leading term LT(f) (resp. its
leading monomial LM(f)) to be the biggest term (resp. monomial) with respect
to <.

Definition 1. G a finite set of elements of I is a Gröbner basis of (f1, . . . , fm)
wrt < if for all f ∈ I there exists g ∈ G such that LT (g) divides LT (f).

Let K be a field containing k, we can define the set of solutions in K which
is the algebraic variety:

VK = {(z1, . . . , zn) ∈ K |fi(z1, . . . , zn) = 0 i = 1, . . . , m}
which is in fact the set of roots of the system of equations. Gröbner bases

can be used in various situation (for instance when the number of solution is
infinite of for computing real solutions). In the case of HFE we want to compute
solutions of algebraic systems in F2. The following proposition tell us how to use
Gröbner bases in order to solve a system over F2:

Proposition 1. The Gröbner basis of [f1, . . . , fm, x2
1 − x1, . . . , x2

n − xn], in
F2[x1, . . . , xn], describe all the solutions of VF2 . Particular useful cases are:

i) VF2 = ∅ (no solution) iff G = [1].
2) VF2 has exactly one solution iff G = [x1 − a1, . . . , xn − an] where ai ∈ F2.

Then (a1, . . . , an) is the solution in F2 of the algebaric system.

This proposition tell us that we have to add the “field equations” x2
i = xi to

the list of equations that we want to solve. Consequently we have to compute a
Gröbner basis of m+n polynomials and n variables. In fact, the more equations
you have the more able you are to compute a Gröbner basis.

3.1 Useful Properties of Gröbner Bases

Another order on monomials is the Degree Reverse lexicographical order or
(DRL order). This order is less intuitive than the lexicographical order but
it has been shown that the DRL ordering is the most efficient, in general, for
computating Gröbner bases.

xα1
1 · · ·xαn

n >DRL xβ1
1 · · ·xβn

n iff deg(xα) =
∑n

i=1 αi > deg(xβ) or deg(xα) >
deg(xβ) and, in α − β ∈ Z

n, the right-most nonzero entry is negative.
We have seen in proposition 1 that Gröbner bases are useful to solve a system

but they can also be used to discover low degree relations:

Proposition 2. If G is a Gröbner basis of an ideal I for <DRL then G contains
all the (independent) equations in I of lowest total degree.
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By computing Gröbner bases it is even possible to find all the algebraic
relations among f1, . . . fm (see [9] page 338 for a precise definition of the ideal
of relations).

Proposition 3. ([9] page 340)
Fix a monomial order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involv-
ing one of the x1, . . . , xn is greater than all monomials in k[y1, . . . , ym] (lexico-
graphical ordering for instance) and let G be the Gröbner basis for this ordering.
Then G ∩ k[y1, . . . , ym] describe all the relations among f1, . . . , fm.

By combining proposition 2 and 3 we can find the lowest degree relations
among the fi. This will enable us to give predict the computation of a Gröbner
basis in the multivariate world from another (easy) Gröbner basis computation
in the univariate world (see section 5.1).

3.2 Algorithms for Computing Gröbner Bases

Note that definition 1 does not depend on a particular algorithm. In the section,
we quickly review existing algorithms and especially the recent improvements
in the field. Historically the first algorithm for computing Gröbner basis was
presented by Buchberger [1,2,3]. The Buchberger algorithm is a very practical
algorithm and it is implemented in all Computer Algebra Systems (a non ex-
haustive list of efficient implementations is: Magma, Cocoa, Singular, Macaulay,
Gb, . . . ); section 3.4 contains a comparison between them for the HFE prob-
lem. More recently, more efficient algorithms for computing Gröbner bases have
been proposed. The first one F4 [10] reduces the computation to a (sparse) lin-
ear algebra problem (from a theoretical point of view the link between solving
algebraic systems and linear algebra is very old, e.g., see [17,16]). More precisely
the algorithm F4 incrementally construct matrices in degree 2, 3, . . . D:

AD =







momoms degree ≤ D in x1, . . . , xn

m1 × fi1 . . .
m2 × fi2 . . .
m3 × fi3 . . .
· · · · · ·





,

where m1, m2, . . . are monomials such that the total degree of mjfij is less than
D. The next step in the algorithm is to compute a row echelon of AD using
linear algebra techniques. It must be emphasized that:

– The rows of AD is a small subset of all the possible rows {mfi s.t. m any
monomial deg(m) ≤ D − deg(fi)}.

– The rows mjfij in the matrix are not necessarily obtained from the initial
set of equations f1, . . . , fm. Thus we can have ij > m, in that case fij was
produced in a previous step of the algorithm (in degree D′ < D).
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The main drawback of this algorithm is that very often the matrix AD does
not have full rank. A new algorithm called F5 that avoids this drawback have
been proposed in [12]. This new algorithm replaces AD by a full rank matrix,
which is thus minimal (if the input system is regular see [12]). For the special case
of F2 we use a dedicated version of this algorithm (called F5/2) that also takes
into account the action of the Frobenius on the solutions. Of course, the imple-
mentation of the linear algebra is also dedicated to F2. In the current implemen-
tation of this algorithm F5/2 in the program FGb (written in C) we use a naive
implementation of Gauss algorithm. The resulting algorithm/implementation is
much more efficient than any other program for solving algebraic equations.
We expect that by using sophisticated techniques described in section 5.2 the
efficiency of such algorithm could be significantly improved.

From a complexity point of view the important parameters are: D the max-
imal degree occurring in the computation and ND, the size of the matrix AD.
The overall complexity is Nω

D where 2 ≤ ω ≤ 3 is the exponent of the linear
algebra algorithm.

3.3 Complexity of Gröbner Bases

The complexity of Gröbner bases algorithms has been studied in a huge number
of papers. Over F2, when the “field equations” x2

i − xi are added, the set of
solutions have a simple geometry. All the ideals are radicals (no multiple roots),
zero dimensional (finite number of solutions). In fact it is easy to prove:
Proposition 4. The maximal degree D of the polynomials occurring in the com-
putation of a Gröbner basis including field equations x2

i = xi is less than n. The
complexity of the whole computation is bounded by a polynomial in 2n.

Remark. Note that this result is only a rough upper bound. This must be com-
pared with the complexity of the exhaustive search O(n2n). In practice, however,
efficient algorithms for computing Gröbner bases behave much better than in the
worst case.

A crucial point in the cryptanalysis of HFE is the ability to distinguish a
“random” (or generic) algebraic system from an algebraic system coming from
HFE. We will establish in section 3 that this can be done by computing Gröbner
bases and comparing the maximal degree occurring in these computations. As a
consequence we have to describe theoretically the behavior of such a computa-
tion. This study is beyond the scope of this paper and is the subject of another
paper [4] from which we extract the asymptotic behavior of the maximal degree
occurring in the computation is: d = max total degree ≈ n

11.114...
From this result we know that computing Gröbner bases of random systems

is simply exponential; consequently, in practice, it is impossible to solve a system
of n equations of degree 2 in n variables when n is big (say n ≥ 80).

3.4 First HFE Challenge Is Broken

The first HFE Challenge was proposed in [23] with a (symbolic) prize of 500$.
This correspond to a HFE(d = 96, n = 80) problem and can be downloaded from
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[21]. For this problem, the exhaustive search attack require ≥ 280 operations,
hence is not feasible.

We have computed a Gröbner basis of this system with the algorithm F5/2.
As explained in section 3.2, the most time consuming operation is the linear
algebra: for this example we have solved a 307126×1667009 matrix over F2. The
total running time was 187892 sec (≈ 2 days and 4 hours) on an HP workstation
with an alpha EV68 processor at 1000 Mhz and 4Go bytes of RAM. Some care
had to be taken for the memory management since the size of the process was
7.65 Giga bytes.

For this algebraic system [21], we found that there were is fact four solutions.
Encoded as numbers by X =

∑80
i=1 xi2i−1 the solutions are 64431800523905114-

0554718, 934344890045941098615214, 1022677713629028761203046 and
1037046082651801149594670. It must be emphasized that this computa-
tion is far beyond reach of all the other implementations and algorithms for
computing Gröbner basis as is made clear by the table 1. Because 80 equations of
degree 2 was a previously untractable problem, this Gröbner basis computation
represents a breakthrough in research on polynomial system solving.

Table 1. Comparison of various algorithms and implementations (PC PIII 1 Ghz)

Algorithm Buchberger F4 F5

System Maple Magma Macaulay Singular FGb FGb
CPU time < 10m 12 17 18 19 22 35
CPU time < 2h 14 19 20 21 28 45

4 Explanation of the Algebraic Cryptanalysis

In the cryptosystems described in section 2, the basic problem is to find solutions
of equations of the form y = L2 ◦ S ◦ L1(x), hidden in multivariate expressions.
In section 3, we saw that general purpose Gröbner basis can be used to solve
this problem. However, in general, computing such a Gröbner basis of a system
of equations is quite difficult. We saw in section 3.4 that instances of HFE can
be solved much faster than random systems of equations of the same size (in
fact the complexity is only polynomial).

In order to explain this qualitative difference, we first need to show that
the structure of the equations in an instance of HFE implies a relatively small
upper bound on the degree m of the polynomials which occur during the Gröbner
basis computation. In fact, we show in the sequel, that this bound depends on the
degree of the secret polynomial S but not on the size of the field F2n . On the other
hand, with random systems, the degree of the intermediate polynomials strongly
depends on n. Computing an exact bound on m is difficult, since the detailed
behavior of general purpose Gröbner basis algorithms is quite complicated. Thus,
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we derive our bound by analyzing the basic linear algebra approach described in
section 3. With this algorithm, we search for linear polynomials in the variables
xi in the space of linear combination of multiples of the public polynomials
pi. When the degree of the intermediate polynomials is m, the degree of the
multipliers is m − 2. First, remark that a solution of y = L2 ◦ S ◦ L1(x) is also a
solution of L−1

2 (y) = S ◦L1(x) and that the degree of the multiples that need to
be considered is thus independent of the linear transformations L1 and L2. As a
consequence, it suffices to prove our statement for the equations directly derived
from the secret equation S − L−1

2 (y) = 0. This can be done by working in the
single variable description of S. Without loss of generality and to simplify the
exposition, we assume the constant term is incorporated into S and look for a
solution of S = 0. In that case, the multivariate equations associated to S can be
expressed in term of S and its Frobenius transforms S2, S4, . . . Moreover, low
degree multiples of the multivariate equations can be obtained by multiplying S
and its Frobenius transforms by monomials of the form xd, where d is a sum of
a small number of powers of two. More precisely, multiplying the multivariate
equations by a monomial of degree t can be performed by multiplying S and
its transforms by a polynomial whose monomials are of the form xd, where the
value of d is a sum of t (different) powers of two. Thus, it suffices to consider
expressions of the form:

∑

i

∑

j

ci,jx
jSi, (1)

where i is a power of two, j a sum of at most m powers of two, and ci,j are
arbitrary elements in the field F2n . Such an expression is linear as a multivariate
polynomial, if and only if, it can be written as a polynomial in x whose monomials
are either constant or x2t

for some value of t.
With these remarks in mind, the original problem can be reformulated as

follows: Find a linear combination of polynomials xjSi (i power of two and j
sum of at most m−2 powers of two), where all monomials xd, where d is the sum
of two or more powers of two, cancel out. Whenever such a combination exists
it can, of course, be found through linear algebra. When, as in multivariate
cryptosystems, the degree of S is bounded by D, we limit the degree1 of the
polynomials xjSi we are considering by some bound H. Then, we count these
polynomials, and denotes their number by NP . We also count the number NM

of different monomials xd, where d is a sum of at least two or more powers
of two, appearing in all these polynomials. When NP is larger than NM , we
have more polynomials to combine than terms to cancel out. Thus, unless some
degeneracy occurs, the linear combination we want must exists. Moreover, the
condition of degeneracy can be expressed algebraically by writing down some
minor determinants that must vanish when a degeneracy is encountered. Thus,
1 When the degree of xjSi is a power of two, the higher degree monomial correspond

to a linear multivariate polynomial, as a consequence it can be ignored. In that case,
we can slightly improve our bounds by replacing the degree of xjSi, by the degree
of its second monomial. The datum provided in table 2 accounts for this fact.
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unless the (randomly chosen) coefficients of S satisfy these algebraic equations,
we can guarantee the success of the attack. Clearly, the proportion of bad secret
polynomials is exponentially vanishing in n. As a consequence, given D and
m, it suffices to evaluate the numbers NP and NM for various values of H to
determine whether Gröbner based cryptanalysis can attack an instance of HFE
while considering intermediate polynomials of degree no higher than m. We do
not explain any further how to solve this combinatorial problem. However, we
now state some results and give some values NP and NM for many proposed
parameters of HFE systems. It should be recalled that this results are upper
bounds and than in practice, the attack may succeed even better.

The degree of the secret polynomial S is at least 3, otherwise, the public
equations are entirely linear. For S of degree 3 and 4, it suffices to take m = 3,
i.e., to multiply the public polynomial by the xi variables and search for a linear
combination. For degrees from 5 to 15, it suffices to take m = 4. From 16 to 127,
m = 5 suffices. From 128 to 1280, m = 6 is enough. Finally, m = 7 works from
degree 1281 up to degree 20480. These bounds really match the experimental
complexity of the simple linear algebra approach except for the boundary cases
of degree 16 and 128. On the other hand, more sophisticated Gröbner basis
algorithms work even better.

The detailed results giving the relation between the degree of S and m, up
to degree D = 4096, are shown in table 2. Note that some values for the degree
of S are missing from this table, this is due to the simple fact that the degree
of S is either a power of two or a sum of two such powers. Table 2 also gives
the maximal number MaxEq of independent equations that may be obtained by
pushing the value of H even further.

4.1 Extension of the Attack to HFE Variations

In order to increase the security of HFE, several variations can be introduced.
In particular, four simple variations are proposed in [22]. These variations are:

1. Remove some (multivariate) equations from the public key. Usually denoted
by HFE-.

2. Add (useless) random equations to the public key. Usually denoted by HFE+.
3. Add extra variables with values in F2, usually denoted by HFEv. More pre-

cisely, the secret polynomial S is now a function of these extra parameters.
However, the multivariate expression should remain quadratic. This is en-
sured by replacing the coefficient of “linear” monomials of the form x2t

by
an affine polynomial in the extra variables, similarly the constant term is
replaced by a degree 2 polynomial in the extra variables.

4. Remove some variables by fixing their values. Usually denoted by HFEf.

All these variations can be combined in cryptosystems. The only restrictions
are that variations 1 and 3 (HFE- and HFEv) are more suited to signature
schemes and that variations 2 and 4 (HFE+ and HFEf) are more suited to en-
cryption schemes. For example, when applying variation 1 to a signature scheme,
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Table 2. Upper bound on the efficiency of Gröbner cryptanalysis

Degree D m H NP NM MaxEq Degree D m H NP NM MaxEq

3 3 3 2 1 2 4 3 6 4 3 1
5 4 10 7 6 16 6 4 14 12 10 14
8 4 20 16 15 12 9 4 27 23 22 10

10 4 30 26 25 9 12 4 57 49 48 7
16 5 44 39 38 248 17 5 51 46 45 230
18 5 54 49 48 219 20 5 60 55 54 210
24 5 76 67 66 200 32 5 120 103 102 162
33 5 142 127 126 153 34 5 150 135 134 149
36 5 169 154 152 142 40 5 192 171 169 132
48 5 242 209 208 119 64 5 548 403 402 88
65 5 601 452 451 80 66 5 650 483 481 79
68 5 664 491 490 76 72 5 724 528 527 71
80 5 936 620 619 64 96 5 1856 1000 998 52

128 6 576 514 513 3763 129 6 584 527 526 3701
130 6 592 536 535 3671 132 6 616 558 557 3633
136 6 659 596 595 3550 144 6 689 620 619 3431
160 6 800 703 701 3285 192 6 977 829 828 3163
256 6 1665 1285 1284 2516 257 6 2060 1484 1482 2486
258 6 2070 1497 1495 2467 260 6 2090 1517 1515 2447
264 6 2147 1572 1571 2417 272 6 2320 1709 1708 2363
288 6 2470 1825 1824 2262 320 6 2828 2032 2031 2143
384 6 3633 2407 2406 1988 512 6 6528 3645 3643 1444
513 6 8337 4212 4211 1420 514 6 8408 4273 4272 1410
516 6 8784 4537 4536 1402 520 6 8896 4606 4605 1388
528 6 9234 4734 4733 1366 544 6 9520 4906 4904 1332
576 6 10378 5180 5179 1261 640 6 11792 5636 5633 1157
768 6 15616 6444 6443 1042 1024 6 74056 17376 17375 573

1025 6 82128 18487 18486 500 1026 6 82656 18689 18688 499
1028 6 83328 18858 18857 495 1032 6 84560 19069 19068 489
1040 6 85520 19139 19138 483 1056 6 89120 19438 19437 462
1088 6 152960 26249 26248 404 1152 6 180480 28270 28268 312
1280 6 246144 31102 31101 138
1536 7 12805 8698 8695 41733 2048 7 19072 11702 11699 38779
2049 7 20487 12285 12284 38709 2050 7 20537 12441 12439 38688
2052 7 20563 12486 12484 38672 2056 7 20588 12510 12509 38648
2064 7 20652 12567 12566 38615 2080 7 20784 12669 12668 38571
2112 7 21072 12859 12857 38435 2176 7 21766 13211 13210 37882
2304 7 23072 13711 13709 36761 2560 7 25880 14484 14483 32707
3072 7 32512 16370 16368 31803 4096 7 71952 29494 29492 28394

we can remove a large number of equations from the public key, it will not pre-
vent signature verification. On the other hand, with an encryption scheme, we
can only delete a small number of public equations. Indeed, before performing
decryption, it is necessary to guess the values of all deleted equations.

In order to evaluate the impact of the variations on the security of HFE,
we need to compute the new values of m (the maximal degree of multiplier
monomials) when each variation is applied. The simplest cases are variations 2
and 4, which preserve m. Indeed, adding random polynomials as in variation
2 increases the number of columns in the matrix M but does not change the
kernel we are looking for (since the number of lines in M is much larger than the
number of columns). Similarly, fixing the value of some variables as in variation
4 collides some lines together, but leave the kernel unchanged.

The action of variation 1 (or HFE-) is more complicated. When a single
equation is removed, the secret key view of the problem is changed. Instead of
having an equation S(x) = y, we now have S(x) = y0 or S(x) = y1 depending
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on the value of the removed equation. These two possibility can be merged into
the following equation (over F2n):

(S + y0)(S + y1) = 0 or S2 + (y0 + y1)S + y0y1 = 0.

Since this new equation is obtained by combining the Frobenius of S and S,
it is again quadratic in the multivariate view. As a consequence, removing a
single equation corresponds (at worse) to a doubling of the degree of S. Thus,
the an upper bound on the value of m can once again be deduced from table 2.
On the other hand, it should be noted that when some public equations are
removed, the cryptanalysis can be somewhat improved. Indeed, if t equations
are removed, then the system is underdetermined. Thus, we may guess the value
of any set of t variables and with good probability still find a solution. Clearly,
this slightly reduces the size of the linear algebra, since any line involving one
of the t variables is either removed (when the variable value is 0) or merge with
another line (corresponding to the monomial without this variable). With more
sophisticated Gröbner basis algorithms the speed-up is quite noticeable.

The most complicated variation to deal with is variation 3 (or HFEv). In
that case, in addition to the main variable x in F2n , we have extra variables v1,
. . . , vs over F2. We assume here that s is small, which must be the case with en-
cryption schemes and is usually true with concrete instances of signature scheme
(typically, s = 4). In that case, any equation computed from S which is “lin-
ear” in the xi may contains additional quadratic terms of the form xivj or vivj .
The problem for the cryptanalyst is that, after the outward linear transform,
this simple structure is hidden. Luckily, there are in fact, many kernel equations
coming from the low degree expression in x, and not a single one. With enough
equations, we can carry the linear algebra step further on and remove the xivj

and vivj terms. Indeed, we need to cancel the coefficients in v1, . . . , vs before
each “linear” term of the form x2t

, we also need to cancel the coefficients of the
vivj . The total number of extra multivariate equations needed is ns+s(s−1)/2.
Thus, for fixed s, it suffices to have s + 1 linear equation in the univariate world
to ensure that the attack again succeeds, without any change in the value of m.

5 Performance Optimizations

5.1 Optimal Degree with Gröbner Basis Algorithms

We have collected a lot of experimental data by running thousand of HFE sys-
tems for various D ≤ 1024 and n ≤ 160 (see [11]). In graph 3, the maximal
degree mF5 occurring in the Gröbner basis computation of an algebraic system
coming from HFE (resp. from a random system as described in table 1 sec-
tion 3.3) is plotted. This graph clearly shows that HFE algebraic systems do not
behave as random systems since the maximal degree occurring in the computa-
tion does not depend on n the size of the field. The second point, is that the
maximal degree mF5 is always less than the upper theoretical bound m found in
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Table 3. Small dots correspond to a computer simulation.

section 4; more precisely when D < 513, mF5 is in fact equal to m − 1 (except
for D = 16 or 128) and when it is big enough mF5 = m.

In section 4 we have derived an upper bound m by searching linear polyno-
mials as a linear combination of “low degree” multiples of S(x). By using again
Gröbner bases and proposition 2 we can derive lower bound of complexity for
any given instance of HFE. We search now low degree polynomials in the univari-
ate world and not only linear relations. Let m− be the minimal degree for which
we have such a low degree relation. Of course, m− ≤ mF5 ≤ m. Another mean-
ingful interpretation of m− is that in this degree we can distinguish between an
instance of HFE and a random system.

Since, we have to express that the degree of a monomial xj where j = 2i1 +
· · ·+2ik is w(j) = k (so that the degree is not j). First, we introduce new variables
Xi corresponding to x2i

together with the relations X2
i = Xi+1. Next, we define

a “low degree relation” by saying that the monomials of highest degree vanish.
To reach this goal, we introduce a new homogenization variable h so that all the
variables Xi are bigger than h and we transform the equations into homogeneous
equations; if we find in the ideal generated by these equations a polynomial f
such that f = hf ′ (in other words h is a factor of f) then we obtain a low
degree relation. For instance if S(x) = x3 + a x2, where a ∈ F2n and c ∈ F2n the
ciphertext, we have the algebraic system of degree 2:

[X0X1 + aX1h − (c3 + a c2) h2, X2
0 − X1h, X2

1 − X2h]

We compute a Gröbner basis of this system and we find the following equation
in degree m− = 3:

h2 ((
c3 + ac2) X0 + a2X1 − X2 − ahc2 (c + a)

)

Note that for this simple example we have in fact a linear relation. In general,
we have to compute a Gröbner basis of an algebraic system of degree 2 similarly
to equations (1):
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S2j

(X0, X1, . . . , h) − S(c)2
j

h2, X2
j − Xj+1 h, j = 0, 1, . . . (2)

Hence we have a very efficient method (the Gröbner basis computation takes only
several seconds) to predict the exact behavior of the Gröbner basis computation
for an explicit instance of HFE. This could be used to detect weak secret key
instances. We see that when D is big enough m = mF5 = m−. For practical

Table 4. Comparison of various bounds m

Degree D m mF5 m−

D=3 or D=4 3 3 3
5 ≤ D ≤ 12 4 3 3

D=16 5 3 3
17 ≤ D ≤ 96 5 4 4

D=128 6 4 4
129 ≤ D ≤ 512 6 5 5
513 ≤ D ≤ 1024 6 6 5
1025 ≤ D ≤ 1280 6 6 6

value of D we can establish precisely the experimental complexity of the Gröbner
attack (see [11] for details) as follows:

Table 5. Experimental complexity of the Gröbner basis attack.

degree of S(x) d ≤ 16 17 ≤ d ≤ 128 129 ≤ d ≤ 512
Gröbner complexity O(n6) O(n8) O(n10)

5.2 With Fast Linear Algebra Techniques

In this section, we show how fast sparse linear algebra techniques can be used to
improve the asymptotic complexity of our attacks. Thanks to the analysis from
section 4 and the implied bounds on m, we know that we can find linear relations
among all linear combinations of the original multivariate polynomials multiplied
by all monomials of degree up to m − 2. In order to compute these relations,
we form a matrix M representing all these polynomials. Each column in the
matrix correspond to one of the polynomials, each line is associated to one of
the monomials. Each entry is the coefficient in F2 of the monomial corresponding
to the entry’s line in the polynomial corresponding to the entry’s column. Then,
we form a truncated copy M ′ of M by removing the lines corresponding to the
constant and linear monomials. Then, any vector k in the kernel of M ′, yields
a “linear” polynomial Lk in x. The expression of this polynomial in term of the
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elementary polynomials and their multiples can be read directly from k. The
value of Lk is obtained by multiplying the matrix M by k and by reading the
values of the lines deleted from M ′.

Thus, in order to solve the original HFE cryptosystem, it suffices to com-
pute many independent vectors from the kernel of M ′. We further remark that
M ′ is relatively sparse, indeed, each line contains as many entries as the ini-
tial quadratic equations. With n variables and n polynomials, there are O(n2)
quadratic monomials and O(nm+1) columns in M ′ and the proportion of non-
zero entries is small. Thus, the right approach is to use algorithms that take
advantage of this sparsity. Over F2, we can for example use the block Wiede-
man or block Lanczos algorithms (see [6,19]). T heir complexity to find O(n)
elements in the kernel of M ′ in term of n-bit word operations is the product of
the total number of non-zero entries in the matrix by its rank. Approximating
the rank by the smallest dimension (i.e., by the number of columns O(nm−1)),
and by counting O(n2) non-zero entry per column, we find a total complexity of
O(nm−1nm−1n2) = O(n2m). We can slightly reduce this complexity by removing
most of the extra lines in M ′. Indeed, since M ′ has O(nm) lines and O(nm−1)
columns, we can form a truncated copy M ′′ of M ′ by randomly removing lines
in M ′ until the number of lines left is almost equal to the number of columns.
Any vector in the kernel of M ′ is of course in the kernel of M ′′. On the other
hand, a vector from the kernel of M ′′ is, with high probability, in the kernel of
M ′. If we keep 50 more lines than columns, the probability to find a bad vector
in the kernel of M ′′ and not in the kernel of M ′ is about 2−50. Assuming that the
number of non-zero entry decreases linearly during this randomized truncation,
the complexity of the cryptanalysis is lowered to O(n2m−1) operations of n-bit
words.

5.3 Incremental Linear Algebra and Almost “Secret Key” Recovery

In fact, this cryptanalysis can be further improved by taking into account some
specific property of M . The first (and probably most important) remark is that
when decrypting many times with the same HFE system the matrix M is almost
the same. More precisely, in the basic quadratic system of equation derived from
HFE, all the non-constant terms are identical from one resolution to the next. Af-
ter multiplication by monomials, we find that the lines of the M that correspond
to monomials of total degree m and m−1 are left unchanged. As a consequence,
the contribution of the columns corresponding to original equations multiplied
by a monomial of degree m−2 or m−3 to the kernel elements is left unchanged.
This implies that the linear algebra can be split into two parts. We first find
the kernel on the submatrix consisting of the lines and columns described above.
This is done once for each HFE public key. Once, the kernel vectors on this
submatrix are found, we add back the deleted lines and evaluate their values for
each of these vectors. In the second part of the linear algebra, which should be
performed for each individual decryption, we solve a much smaller system which
involve the previously deleted lines and columns. More precisely, we want, for
each kernel element from the first phase, to cancel its contribution to the deleted
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lines. Since the linear algebra in the second phase involves a much smaller ma-
trix, we have almost recovered an equivalent of the secret key. Indeed, after a
first expensive step, we can now decrypt quite efficiently.

Looking further into the specific properties of the matrix M we find that
the linear algebra can be improved again. Indeed, assume that we want to find
the projection of the kernel of M ′ on a subset of the column vectors. A possible
technique is to form a submatrix with these columns and all the lines which are
equal to zero on all the other columns. If the number of lines is greater than the
number of columns, we probably find the right result. If the number of lines is
too small, we find a larger (probably useless) subspace than the kernel. Luckily
for us, we can find subsets of the column vectors with enough corresponding
lines. One possible construction is to choose a subset Sk of k variables among
x1, . . . xn and form the subset of the columns corresponding to the original
equations multiplied by monomials of degree m − 2 formed of the product of
m − 2 variables from Sk. Clearly, the lines corresponding to the product of m
variables from Sk are zero outside of the chosen subset. The number of chosen
columns is n · (

m−2
k

)
, while the number of lines is

(
m
k

)
. From an asymptotic

point of view, k is thus of the order of
√

n. This reduces the dimension of the
linear system to O(km), moreover, the number of non-zero entries per line is
now O(k2). Thus the complexity of the initial step of the attack to O(k2m+2) or
O(nm+1) operations on n-bit words. However, we now need to add the remaining
columns and find their contribution. In all generality, it is cumbersome to do this
efficiently. Yet, for concrete examples, this is easily done (see section 5.4).

Implementation considerations When implementing the above approach with
sparse linear algebra technique, the memory complexity can also be greatly re-
duced. Indeed, the matrices we are considering have a very regular structure
and can be generated by adding together copies of the much smaller matrix that
encodes the original public equation. In the copied matrices, the coefficient are
moved around through multiplication by some monomial. In sparse linear alge-
bra algorithms, it is important to efficient compute matrix by vector products
(for the matrix and its transpose). To save memory, we do not precompute the
expanded matrix, but only store the small one. Then the matrix-vector multi-
plication can be performed by following the structure of the large matrix. For
each multiplier monomial, it suffices to extract a small subvector, to multiply
it by the small matrix and to add the result in some subvector of the result.
Moreover, the result matrix-vector multiplication algorithm is respectful of the
memory cache structure. As a consequence, it runs faster than the ordinary
sparse matrix multiplication that uses the expanded matrix.

5.4 Application to Quartz

The Quartz cryptosystem [24] is a signature scheme from the HFE family with
variation 1 and 3 applied. Each signature computation requires four HFE inver-
sions. The underlying finite field is F2103 and the degree of the secret polynomial
is 129. Variation 1 is applied by deleting 3 public equations, variation 3 adds 4
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extra variables. Looking up in table 2 at degree 23 ∗ 129 = 1032, we find that
m = 6. With incremental linear algebra, the starting point is to multiply the
99 public equations by all monomials of degree 4 in 60 variables. This yields
a system of dimension around 48 millions and approximately 1800 entries per
lines. The estimated complexity of the initial linear algebra step is 262. While
out of range, this is much lower than the estimated security bound of 280 triple
DES announced in [24] and [7].

6 Conclusion

We have presented a very efficient attack on the basic HFE cryptosystem based
on Gröbner bases computation. It is not only a theoretical attack with a good
complexity but also a very practical method since our implementation was able to
break the first HFE challenge (80 bits). The results presented in this paper shed
a new light on the security of many schemes in the HFE family. The main result
is that when the degree D of the secret polynomial is fixed, the cryptanalysis of
an HFE system requires polynomial time in the number of variables. Of course,
if D and n are large enough, the cryptanalysis may still be out of practical
reach. Yet, this shows the need for a re-evaluation of the security of HFE based
cryptosystems.
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