Available online at www.sciencedirect.com
ADVANCES IN

SCIENCE@DIHECT” Applied

Mathematics

R

ELSEVIER Advances in Applied Mathematics 31 (2003) 643—-658
www.elsevier.com/locate/lyaama

The membrane inclusions curvature equations

Jean-Charles Faugétéjilena Hering®* and Jeff Phah

aLIP6/CNRS Université Paris, 6, Paris, cedex 5, France
b University of Michigan, Ann Arbor, M| 48109, USA
¢ Columbia University, 2960 Broadway, New York, NY 10027-6902, USA

Received 23 May 2002; accepted 8 January 2003

Abstract

We examine a system of equations arising in biophysics whose solutions are believed to represent
the stable positions a¥ conical proteins embedded in a cell membrane. Symmetry considerations
motivate two equivalent refomulations of the system which allow the complete classification of
solutions for smallV < 13. The occurrence of regular geometric patterns in these solutions suggests
considering a simpler system, which leads to the detection of solutions for lErgerto 280. We
use the most recent techniques of Grébner bases computation for solving polynomial systems of
equations.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Both the shapes and positions of proteins which are embedded in a cell membrane
can influence their biological function. It is the interaction between the proteins which
dictates how they become arranged, but little is known about this interaction and its exact
cause is uncertain. However, for conical proteins, a likely explanation is the bending of
the membrane caused by the proteins. Specifically, an embedded conical protein induces a
curvature in the two-dimensional membrane which influences the positions of neighboring
proteins. There is an energy associated to this curvature and the proteins will tend to
arrange themselves so as to minimize this energy. Recent work in [KJG98] shows that
any minimum energy arrangement is a zero energy arrangement. Furthermpis tife
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position of theith protein using complex coordinates, it was also shown that the energy at
theith protein is a constant multiple ¢f; (z1, ..., zy)|? Where

N

fiza, .oz =Y

j=1

J#i

Therefore theV proteins are at equilibrium if and only &1, ..., zx) is a solution to the
Membrane Inclusions Curvature Equations, or MICE:

1
(zi —zj)%

fiz,...,zn) =0, i=1,... N. (1)

For brevity, we refer to thé/th system of equations agy .

One possible application of knowing how these proteins arrange themselves is to deduce
the form of proteins by examining the shapes they form. In this case, if they arrange
themselves according to our solutions it is very likely that they are conical. Determining
the shapes of proteins is still an unsolved problem in biology.

Grobner bases are used to find the solution&/gf for severalN. In Section 2, we re-
view the most efficient algorithms for computing Grébner bases and their implementations.
Direct application of these algorithms gives all the solutions of the problem fer7 and
is described in Section 3. Because the difficulty of computing Grébner bases increases
rapidly with respect to the complexity of the input equations, it is necessary to reformulate
the system before most of the computations will successfully terminate. Two reformula-
tions of M into equivalent systems are given in Section 4. The first reformulation employs
an algorithm for converting the numerators of th#g; equations into symmetric polyno-
mials, which are then expressed in terms of the elementary symmetric functions prior to
computing. The second reformulation uses a differential equation describing the minimum
polynomial for the coordinates of a solution and gives directly a system already formulated
using the elementary symmetric functions. Both reformulations can be used jointly to de-
crease the computation time. Finally, we consider a much simplified system obtained from
My by limiting our search to those solutions which have a certain geometric regularity to
them; namely, we look for solutions whose coordinates form concentric rings of regular
polygons. While this last approach does not detect all solutions for a giyé@rdoes allow
many to be found.

Our main result is a complete classification of the solutions for small valueé:for

Theorem 1.1. There are no solutions foN < 12 except forN =5 (finite number of
solutiond and N = 8 (Mg form al-dimensional variety

The proof of this theorem is included in Sections 3 and 4. For larger valuasweé
have only a partial result:

Theorem 1.2. There exist solutions t&fy for N =5, 8, 16, 21, 33, 37, 40, 56, 65, 85, 119
133 161, 175 208, 225, 261, and280. Moreover the number of solutions fbf,g and M21
is infinite.

We explain in Section 5 how we find this list of “regular solutions.”
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2. Toolsfor solving polynomial equations

We now review some major algorithms for solving multivariate polynomial systems.
The reader is also referred to [Dav93,Bec93,CL0O92,CLO98] for a more detailed
introduction.

Let Q[x1,...,x,] be the polynomial ring with rational coefficients, a finite list of
polynomials and the ideal generated by.

The main tools we use are Grébner bases [Buc65,Buc70,Buc79,Buc85]. We recall that,
in general, when the number of equations equals the number of variables the shape of the
Grobner basis for a lexicographical ordering is the following:

hn(xn),
Xp—1=hp_1(xp),

x1=hi(xy),

where all theh; are univariate polynomials. Of course the shape of a lexicographical
Grobner basis is not always so simple but it will always be the case in this paper
(except one very easy nonzero-dimensional system). From this Grébner basis it is rather
easy to compute numerically all the complex roots: we first solve numerically the first
equation [DG99], and we fingy, ..., zy a guaranteed approximation of all the complex
roots off,,. Then we substitute these values into the other coordinates.

Even if all the algorithms for computing Grobner bases do not depend on a specific
order it is well known [Fau93] that it is more efficient to compute first a Grobner basis
for a Degree Reverse Lexicographical (DRL) ordering and then change the ordering with a
specific algorithm. In this paper we have used a standard implementation of the Buchberger
algorithm and the FGLM algorithm in Singular [Gre99] for easy cases. When the degree
of the univariate polynomial is bigx 500), we have used:

o the F4 [Fau99] algorithm for computing a DRL Grdbner basis;
o the F» [Fau94] algorithm to change the ordering. For the bigger computations we
found that the dimension @[x1, ..., x,1/I is bigger than 18

These two algorithms are implemented in an experimental software called FGb [Fau].
For generating the input equations we have used the Maple [Cha91] computer algebra
system.

3. First experiments

First, we observe that the set of solutionsi&y is invariant under translation and
multiplication by complex scalars. These considerations allow us to change coordinates
so thatzg =0 andzp = 1.

Since thef; in the systemM are rational functions we need to transform the system
into a polynomial system. In order to avoid “parasite” solutions, whete z; for some
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i # j, we introduce a new variableand letP; be the numerator of each in My. That
is to say

PI(Zlv"'yzN):ZH(Zl_Zk)zzov i:]-s"'st
JFL kF
k]

N N
[T [] @-2p=1,
;o i=1j=i+1
My = Pi(z1,...,znv) =0, i=1,...,N, (2)
721 =0,
z2=1.

Proposition 3.1. There is no solution foN < 4 and N = 6. The only solution fois is a
regular pentagon.

Proof. For N <5 it takes less than.0 second to compute a lexicographic Grébner basis
with FGb on a PC Pentium 11 300 Mhz. Fof < 5 the Grébner basis id}. ForN =5 we

can factorize the univariate polynomial and find a decomposition into irreducible varieties:
V=ViUV,UV3UV4UV5U Vg and

I(V)=[z3— 2 +&—zs.2a+28— 25,26 — 22+ 28 — 25+ 1]

For any polynomialp in x1,...,xy and any permutation, seto.p = p(xs (1), - .-,
Xo(n)) ando.I (V) ={o.p: Vp € I(V)}. Itis easy to check that

(z4,z5).1 (V1) = 1 (Vs), (z3,25).1(V1) = 1(V3), (z3,24).1(V1) = 1(V2),
(23,24, 25).1 (V1) = 1 (V5), (23, 25, 24).1 (V1) = 1 (V4).
Now we have

z§+1
75+ 1

zé—zé—i—z%—zs—i—lz

so thatzs = €'7/5 and we see that the only solution is the regular pentagon.
The caseV = 6 is a little more difficult: the degree of the polynomial

N N
Ml_[ l_[ (zi—z))=1

i=1j=i+1

is1+ N(N — 1)/2=16 and so big that it does not help the Grébner basis computation. In
that case we can replace this conditiorifayz4z5z6 = 1 and it takes only 13.6 seconds to
find {1} with Fgb. O
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In conclusion, the straightforward approach solves the problem for g¥nlalit leads to
several problems:

¢ intermediate computations contain the same solution several times (because solutions
are invariant under permutations of the variakigs. ., zy),

so the degrees of the intermediate varieties are big;
e itis not easy to remove the parasite solutions z;.

We have stopped the computation fér= 7 after 2000 seconds.

4, Using the symmetry

It is clear from (1) that if(z1, ..., zy) € CV is a solution ofMy then(z;,, ..., ziy) is
also a solution of\f, for every possible permutation ¢fz, ..., ix) of (1,...,n). Hence
it is enough to compute the polynomial

fX) =X -z X —zn)=X" —er XV (= DNey,

where thee; = ¢;(z1, ..., zn) are the elementary symmetric functionszin ..., zy. In
this paper we will say that is a solution taMy .

In general solving efficiently a polynomial system with symmetries is an open issue
especially when the group acting is a proper subgroup of the symmetric group. In our
problem the solutions are invariant under the symmetric group but unfortunatisiy ot
a symmetric polynomial ijzy, . .., z,) butonly in{z;: j #i}. If we exchange the role of
zj andz then f; remain unchanged whilg; becomesf; and reciprocally

zjozw fi=fifori£jk fi< fi
4.1. nilCoxeter algebra

Let e, be therth elementary symmetric function iN variables. Foi = (A1, ..., ;)
let

s s
mx=ZZi11‘“Zirr (3)

denote the monomial symmetric functions, where the sum ranges over all monomials
whose exponent vector is equal to a permutatioh. @olving My is equivalent to finding

a polynomial

fF=XN—erXN"1pepxN=2 ... 4 (—DNey, @)

f issquarefree
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whose roots are a solution &y . For any polynomiap in z1, ..., zy, set

p(z1,22,...,2N) — P(Zi, 22, - 5 Zi=1, 21, Zitls - - - » TN)
21— Z ’

0i(p) =

()

Let I; be the ideal generated 4, ..., Py. We define by induction
L= I-1: ( [ G- Ziz)) (6)
i1<ip
and/ = I,. Note thatP; = (1,i).P1 for 1 <i < N and Py is symmetric inza, ..., zy.
Theorem 4.1. Define forl <iy <--- <ig+1 <N

P o _ Pil.,---,ik - Pil,---,ik—l,ik+1
i15eenslksipyl = - - ’
Tig — Zigs1

so thatP;,, ;€ Ir and P, _;, is symmetric irx;,, ..., z;, and in the complementary set
of variables. Hence

H = Z Piy,...ix

1<iz<<ix <N
is a true symmetric function.
The next theorem gives an efficient method for computingiHpe

Theorem4.2. Forl<ii<---<ify <N

Py i =101).(2,i2). - - - .(k, i) O,

whereQy = P12, x and we have

Ok =0k Qf-1.

The H; were first computed in the monomial basig using code specifically written
for this application in C++ in the small computer algebra system Gb; then the polynomials
were expressed in the basis using ACE [AS98], SF [J.98], and Symmetrica [Sym]. If we
setzy = 0 andzy_1 = 1 prior to computing th&d;, the reformulated systeﬁw consists
of the polynomialsHy, ..., Hy, Py—1, Py in the variable®s, ..., ey—_2. It turns out that
§N is easier to solve: it takes 2 minutes to compute a Grobner basié fo.0 with FGDb,
while the calculation fo7 was unsuccessfully stopped after 2000 seconds.
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4.2. Harm Derksen’s formulation

Our second reformulation was found by Harm Derksen [Der99], and appeals to the
structure of the polynomiaf in (5). First, a lemma.

Lemma4.3. Forany(z1, ..., zy) € CV,

Proof. Sincezj.vzl(l/zj) =en—1/ey andy",_ :(1/ziz;) = en—2/en, We have

i>j

T Zidj ey eN

N N 2 2
»5-(rd) ey todaae o
2=\ -

Theorem 4.4. (z1, ..., zy) is a solution toMy if and only if

S is squarefree, and
3(f"2—4f f" isdivisible byf,
wheref =T (x —zi) =xV —erxV L4 epxV =2 — ... 4 (=D)Ney.

Proof. Let S, be therth elementary symmetric polynomial im — z1,...,x — zyn.
Note that replacinge by z; in S, gives therth elementary symmetric polynomial in
Zi — 21,52 — Zi-1,%i — Zi+1,---» 2 — 2N, Which we denote byE!. Furthermore, the
kth derivative off is f® = k!Sy_x so thatf® (z;) = k!EL,_,. Seth :=3(f")?—4f' f".
Then

h(z) =3(2Ey_p)" — 4Ey_4(3Ey_3) = 12((E}y_)° — 2y _1Elys).  (7)
By Lemma 4.3
l = @—z)? (Ey_1)? ’

so thath(z;) is a constant multiple of the numerator ff Thereforef dividesi and the
z; are distinctes h(z;) = 0 for all i and thez; are distincts f;(z1,...,zy) =0 for all i
& (z1,...,zy) iIsasolutionofMy. O

Letr be the remainder of dividing by f, and letc;, 1< j < dedr), be the coefficient
of x/ in r. Then each; is a polynomial in thez;; and Theorem 4.4 implies the system
cjler,...,en) =0,1< j <deqr), is equivalent tal y.
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Computations with Singular [Gre99] using the formulation of Theorem 4.4 reveal a
one-dimensional family of solution shapes fér= 8:

Proposition 4.5. The coordinates of a solution td/g are given by the roots of the
polynomial

28
B+ Etsa + 14%a? + 28:%a°% — t — 7a%,

wherea is arbitrary. Settinga = 0, the roots form a regular heptagon with a point in the
center. Varying: deforms this into irregular hexagons with two points in the interior.

SolutionsN =8, a =0 SolutionsN =8, a =100
e 204
e
® ®
o 0.5 104
—1-0.8-0.6-0.4-0.2 0204 9608 1 8 6 -4 2 24,6 8
¢ —05 -10
L ] ®
®
® 1 204

This is a one-dimensional family of solution shapes.
Proposition 4.6. There are no solutions tfy for N =3,4,6,7,9, 10,11, and12.

Proof. For N = 3,4, short (less than one minute by Maple on a Sun Ultra-5) Grébner
bases computations show that,, henceMy, has no solutions. For the remaining
computations using one or both of the above reformulations show that there are no solutions
of the equivalent systems. Fo&f > 7 we use FGb for the computations. Wh&n> 9
another difficulty arises in the computation: it is impossible to compute the discriminant
of g=xN"2—e1xVN 3 4 epxVN=4— ... 4 (=1)Ney_». At the beginning we add only the
conditiong(0) = ey—2 # 0 andg (1) # 0 and we compute a lexicographical Grobner basis.
Finally we remove the bad solutions

5. Regular solutions

The geometry of the solutions known thus far lead one to ask: What other regular
polygons are solution shapes (with or without a point in the center)? What about two
regular polygons, ot regular polygons? We use the notatj@nm, p] to denote a solution
shape consisting of regular concentrig:-gons andp = 1 or 0 as there is or is not a point
in the center. Thus a solutign, m, p] will be a solution forM,,,,,,. We begin this section
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by trying to find “by hand” some regular solutions and then give a more systematic way to
find these solutions.

5.1. Oneregularm-gon:[1,m, p]
Since the solutions are invariant under translation and multiplication by complex
numbers, it suffices to examine theth roots of unity.

The main lemma we need is

Lemma5.1. Letw be a primitivernth root of unity. Then

t1 "~ 1 (m-1(m-5

;(wf)Z =0, X_; (i —1)2 12 ’

J= J=

i 1 _mb" (b +a™ (m — 1)) ©)
(“a)/ — 1)2 " — am)?

Proof. From Lemma 4.3 we know

Noq e _1—2enen—2
2_2 2 ’
j=1 I

en

where thee; are the elementary symmetric polynomials in the The polynomials with
rootse’ (1< j<m), 0w/ —1(1<j<m—1),andjew’ —1(1<j<m)are

P(X)=X" -1,

_(X+1)m_1_ m—1 m-=2 . m 2 m
P(X)—ix =X"""4+mX"+ +(3>X +<2)X+m,
P(X):(X—i—l)m—(%) , (10)

respectively. Substituting in the corresponding valuegafey_1, andey_2 gives the
result. O

We first consider the cage= 0:[1,m, 0], i.e.,N =m. Letz; = o' forall i, wherew is
a primitivemth root of unity. Then theéth equation is

m—1

1 1 1 1 1 1

LD Dl ey e Byor ey Ak Py D Do g v ey B eyl
JF#i ’ J#i J#i j=1
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By Lemma 5.1, for ali theith equation is zero if and only if

| (m=DHm=5 _
Z:mﬂ—DZ__ 12 -
j=1
i.e.,ifand only ifm =5 orm = 1. Thus the regular pentagon is the only solution shape for
this case.
If p =1 we are looking at polygons of the shdfem, 1] with N = m + 1 and then we
havez; =o' fori =1,...,m andz,,+1 = 0. Then the(m + 1)st equation

m 1
fm+1=2m =0

j=1

by Lemma5.1. Foi =1, ..., m, theith equation is

1 1 1 1 1
ﬁzZ%a—qﬁzzzwhwm2+@mf=@¥(2%w4—bz+0

J# J# J#
1t Iff ! +1 (11)
S @2\ -2 )
Soforalli =1, ..., m theith equation is zero if and only if
m—1
Z 1 __(m—l)(m—S)__l
(] —1)2 12 v
j=1

i.e.,m =7 orm = —1. Therefore the regular heptagon with a point in the center is the only
solution shape in this case.

5.2. Two regulam-gons[2, m, x]

Again we may fix onen-gon, Py, to be themth roots of unity. We introduce a new
complex variablex, to describe the second-gon, P, = x P1, where multiplication of a
polygon P with x meansy times each vertex of the polygon.

Proposition 5.2. There are no solution shapes of the fof2nm, 0] or [2, m, 1].
Proof. We include in square brackets facts for the dése:, 1]. Let

o' ifi=1,...,m,

Zi=3x0 fi=m+1,...,2m, (12)
[0 ifi=2m+1].
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Dividing by (1/»%)? in the ith equation when = 1,...,m, or (1/(x»"))? wheni =
m+1,...,2m, we get two equations in one unknown:

(m—1)(m —5) m(l+x"(m-1)
—T[+1] + 12 =0, (13)

(m —1)(m —5) mx" (x" +m—1)
_TH_H + 12 =0, (24)

where we have used the third part of Lemma 5.1. Subtracting one equation from the other
gives

1—x2" =0, (15)

so the solution set would have to consist @ftB roots of unities. But we have already
seen that in the single polygon case the only solutionsmaze5 andm = 7, neither of
which is divisible by two. Therefore no shapes of the fd@ymn, 0] or [2,m, 1] can be a
solution. O

5.3. The generalization

Using the differential equation of Theorem 4.4 we can find some more conditions not
only for the case of regular polygons but for any set of roots to a polynasial). For
the case of regular polygons this raises the chances of successful computations since we
can add the new equations to our old systems.

Definition 5.3. Let N, M, P be univariate polynomials of degree m, p. We use
the notation[N, M, P] to denote the set of solutions a¥,,,,, with the shape
P(X)N(M(X)). In the particular cas® (X) = X?, M(X) = X™ we use the simplified
notation[N, m, p].

Theorem 5.4. Let N(x) = Y " ,a; X' be a square free polynomial of degreesuch that
ap # 0. Then[N, m, p] (withm > 1) is a solution ofM,,,,.4, if and only if p < 1and N (X)
divides
n . .
> ijaiaj(mi —1)(3mj+5—4mi) X' if p=0
=1
and N (X) divides

n
> aiajjm(im+ D(im +D)@im — 4jm + HXH i p=1.

i=0
=1
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Proof. Let f(X) = X?N(X"™). We know from Theorem 4.4 thatis a solution ofM,,,, 1,
if and only if f is square free antl (X) = 3(f”)% — 4f' f" is divisible by f (X). The first
condition is true as soon gs< 1 since 0 is not a root aV (X).

Considering the case = 0, we find:

n

2
UX)= 3(2 im(mi — 1)a,~x""'—2>

i=1
n ) n )
- 4( > imaiXm’l) (Z im(mi — 1)(mi — 2)a,»x””3),
i=1 i=i3
whereiz =2 if m = 2 andiz = 1 else. Sinc&X and f(X) are relative primeyf dividesU

iff f dividesX*U =V with

n

2
V(X) = 3<Zim(mi - 1)a,»x""')

i=1
n ) n )
- 4<ZimaiX"“> (Zim(mi — ) (mi — 2)a,-x""),
i=1 i=i3

henceV = W(X™) is divisible by N (X™) iff W(X) is divisible by N (X). We can rewrite
the sum:

n
W(X)=m?Y"ijaiaj(mi —1)3mj+5— 4mi) X"/,

i=1
=1

We consider now the cage= 1 and find:

" 2
UX) = 3<Zai(im + 1)(im)x"'"1)

i=1

_ 4<Zai(im + 1)Xim> (Zai(im +)(@im)(im — 1)Xim—2>

i=0 i=1

must be divisible byX and N(X™), so thatm > 2 and V1(X) = X2U(X) should be
divisible by N (X™).

n 2
Vi(X) = 3( Za,» (im+ 1)(im)x"'">

i=1
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n n
- 4(Zai(im + 1)X”"> (Zai(l’m + 1) (im)(im — 1)X”").
i=0 i=1
This equivalent to divisibility of

n 2
Wi(X) = 3(261,» (im + 1)(im)xi)

i=1

- 4<Za,~(im + 1)x") (Zai(im + ) (im)(im — 1)X">
i=0 i=1
= Z aiajjm(jm+1)(im+1)@im —4jm +HXT . O

i=0
=1

Remark 5.5. We can always suppose thsitX) = X" + X" 1 + 3" 24, X'

Remark 5.6. In the following we give an explicit value te and p and we considew: as a
variable.

Corollary 5.7. There are no solutions of the forfv, 2, 1].

Proof. From the proof of Theorem 5.4;(X) = XN (X) does not dividd/ (X) because
X does not dividd/ (X). O

Corollary 5.8. For degN) =1, [N,m,0] is a solution iff(m — 1)(m — 5) = 0 and
NX)=1+X.

Proof. We apply Theorem 5.4ty = 1+ X and we findW (X) = —X2(m — 1)(m — 5).
]

Corollary 5.9. FordegN) =1, [N, m, 1] is a solution iffm =7andN(X) =1+ X.
Proof. We apply Theorem 5.4ty =1+ X and we find
Wi(X) = X (—4+ 4m?) + X2(m> — 2m? — Tm — 4)
and the remainder d¥; divided by N should be zero:
—m(—=7+m)(m+ 1)x. O

Corollary 5.10. degN) = 2, [N, m, Q] there is no solution.
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Proof. We apply Theorem 5.4t = ap + X + X2 and we find
W(X) = —(4(2m — 1)(2m — 5)X? + 4(m — 1)(4m — 5)X + (m — 1)(m — 5))X2

and the remainder d¥ divided by N should be zero:

—(~5—m? 4 18n — 60agm + 16agm? + 20a0) X
— (=m?+ 18m — 5+ 16agm? — 48agm + 20ag)ag = O.
We can compute a lexicographical Grébner of the coefficients:
[20a0 — m? + 18n — 5, m(m? — 18n + 5)]
and the number of solutions is 0.
5.4. Summary of the regular solutions

An extended version of this paper including a complete list of solutions, pictures and all
the polynomials can be found at http://calfor.lip6.fr/~jcf/MICE/mice.ps.gz. We summarize
all the results:

Theorem 5.11. For fixed values ofi and p we give all the possible values af and for
eachm all the solutiongn, m, p]. The results are summarized in Talile

Table 1

Shape Values ofi Values of N
[, m, 0] m=>5 N=5

[1,m,1] m=7 N=8

[2,m, 0] [

[2,m, 1] [4]

[3,m, 0] m=7,m=11 N=21,N=33
[3,m, 1] m=5m=13 N=16,N =40
[4,m, Q] m=2,m=4 N=8,N=16
[4,m, 1] m=>5 N=21

[5,m, 0] m=13,m =17 N =65N=85
[5,m, 1] m=11,m =19 N =56,N =96
[6, m, 0] @

[6, m, 1] 0

[7,m, 0] m=19,m =23 N =133,N =161
[7,m, 1] m=17,m =25 N =119,N =175
[8,m, 0] m=5m=7 N =40,N =56
[8,m, 1] m=4,m=8 N =33,N =65

[9,m, 0] m=25m=29 N =225,N =261
[9,m, 1] m=23,m=31 N =208,N =280
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Solutions [9,31,1]

Fig. 1. One regular solution fav = 280.

Coroallary 5.12. Using this information we could find the following solution families

11 11
f(x) = —32}\.X5+)\. +x16+x11+ EXG —_ Esx,
13 13
f(x):—kx+25kx8+x21+xl4— 1—OX7 4—00,

for N=16andN = 21.

Conjecture 5.13. For n odd, there will be solutions fojn, m, 0] with m = 3n — 2 and
m =3n-+2andfor[n,m, 1] withm =3n—4, m =3n + 4. O

6. Conclusion

We have a new application of computer algebra in biological physics. We were able
to solve the system completely up @ = 12 using the symmetry and the most recent
techniques for the Grébner bases computation. Starting with solution shapes of regular
polygons we found solution families fof = 8, 16, 21 as well as single solutions fof up
to 280 for which we have reason to assume that they are part of solution families as well.

From the biophysical point of view, solutions for about 1000 are needed since there
are thousands of proteins in a cell membrane [Kim99]. But even small numbers of proteins
can give some interesting insights. We have extended the results in the original paper
[KJIG98] fromN =5to 12.
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This work is a particular instance of the more general problem of finding a global
minimum of an energy function and in particular we want to point out similar work related
to the classification of the stable solutions of theody problem.
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