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ABSTRACT

This paper introduces a new efficient algorithm for compm@robner
bases. We replace the Buchberger criteria by an optimairizit
We give a proof that the resulting algorithm (call€§) generates
no useless critical pairs if the input is a regular sequengéis a
new result by itself but a first implementation of the algamitF5
shows that it is also very efficient in practice: for instampeevi-
ously untractable problems can be solved (cyclic 10). Irtra
for most examples there is no reduction to zero. We illusttiis
algorithm by one detailed example.

1. INTRODUCTION

Solving polynomial systems is an important part of Compitier
gebra since a lot of practical problems (cryptography, tickpce-
lestial mechanics, error correcting codes, signal theary, can
be solved with these algorithms. Among all available meshod
for solving polynomial systems, computation of Grobnesdsare-
mains one of the more powerful. Historically, the Buchberaje
gorithm was the first algorithm for computing such Grobreses.

It may eventually be possible to suggest two improvementthi®
Buchberger algorithm [3, 4, 5]. The firstimprovement is camned
with strategies: during a Grobner computation, severaicgs can
be made (select a critical pair, choose a reductor) thiscage¢he
problem is not directly studied in this paper, but is impletee in
other algorithms 4 [6] for instance). The other open issue was
to remove useless computations: sif6& of the time is spent in
computing zero it is a very challenging question to have aemor
powerful criterion to remove useless critical pairs. Thipliecisely
the goal of this paper to give a theoretical and practicalvens

In [9] the link between the computation of a Grobner basig'cE
[f1,..., fm] and linear algebra is done: the Buchberger algorithm
can be considered as a triangularisation of a submatreafytivester
matrix. The reduction of a polynomial to zero can be intetguieas

a linear dependence of the rows of this matrix. Since eachofow
the matrix is a produat x f wheret is aterm andf € F', a linear
dependence i§_ Atf = 0 or by grouping terms} """ | g;f; = 0.

In other words(gs, . .., gm) iS @ syzygy.

Several papers investigate those issues: Buchberger ¢pppes
two criteria to remove a lot of useless critical pairs; stxgd lin-
ear bases are used in [7]; the idea of [10] is to compute samult
neously a Grdbner basis and a basis of the module of syzyaies
critical pair is not considered if the corresponding syzigg linear
combination of some elements of the current basis of the teodu
of syzygies. They have in all in common to use implicitly or ex
plicitly the trivial sysygiesf; f; = f; fi. Another common point
is that all the algorithms are nearly Buchberger’s alganigxcept
that some reductions are avoided. The efficiency of those- alg
rithms is not yet satisfactory in theory and practice beeauwt of
useless critical pairs are not removed. For instance weedfoomn
[10] that “many useless pairs are discovered, but it in®ladot

of extra computation, so the execution time is increasediothAer
approch is involutive bases [11] which is based on the canakep
involutive monomial division: some reductions are forteddand
S0 some computations are not considered.

The strategy in this paper is to take into account only theatri
syzygiesf; f; — f; fi = 0 but not to compute the module of syzy-
gies. This imply (see section 2 and 4) two major differencél w
the standard Buchberger algorithm or tRg algorithm: first we
need to computall the Grobner basis of the following idedls.. ),
(fm=1, fm),....(f1,..., fm). The second difference is that some
reductions are not allowed; as a result the reducticonefpolyno-
mial by a list of polynomials may bseveralpolynomials. A con-
sequence of the restriction to trivial syzygies is that, orst cases,
the algorithm does not avoid all the useless pairs: for imcstaf we
have two times the same polynomial in the original equattbase

is a reduction to zero. However we give the proof (see canoBa
that if the input system is a regular sequences then there iis-n
duction to zero. Moreover, in practice, for most systemsethe
no reduction to zero (experimental evidences are givenlin &n-
other important point is that the new algorithm does not wapr
the theoretical worst case complexity for computing Getivases
but experimentally (see section 9.2 for some some CPU tisning
and comparison with other algorithms), thg is faster than all the
previously implemented algorithms. The limited length loé pa-
per impose us to make some choices: we give a full descripfion
the algorithm and a detailed example but the proofs of coress
and termination are only sketched. For the same reason flegiex
mental section 9 is minimal. A full paper describing the aition

in the most general case is in preparation.

The plan of the paper is as follows. The section 5 is devoted to
presenting the new criterion, and a theorem giving an etgrita



condition for a set of polynomials to be a Grobner basis. e
sulting algorithm is described in section 7. This sectioriudes
also the proof of the correctness of the algorithm. In sectiove
give the idea of the algorithm. The necessary mathematmtal n
tions (we make the choice to use the same notations as in the bo
[2]) are reviewed in section 3. In section 8 we compute thergpta
from [10] in full. The name of this algorithm is simply algthim
number5. In the rest of this papef; stands for this algorithm.

2. THE IDEA

We consider the following systems of degtei@ 3 variablese, y, z

depending on the parametee {0, 1}:

fs=a?+18zy + 19y +8xz + 5yz + 7 2*

Sp fo=3x2 +(T+b)xy+2222+ 11yz+ 2222 + 897

fi=6x+12zy+4y* +1dzz+9yz+ 722

We want to compute a Grobner basisfef f, f3 modulo23 for a
total degree ordering withh > y > z. This can be done with the
Buchberger algorithm (including the Buchberger criterthgre is

5 useless pairs angluseful ones. First we suppose tlhat 0. To
compute the Grobner basis, we proceed degree by degre¢hd-or
degree2 there is no choice to construct the matrix:

2

¢ xy y2 Tz Yz

fs (1 18 19 8 5

Ar=fo | 3 7 8 22 11

Ai\6 12 4 14 9

and after triangulation of the matrif,:

2 oz Yy y2 rz Y=z

fs (1 18 19 8 5

Bo=fil 0 1 3 2 4
fiyo 0 1 -11 -3

and we have constructed two “new” polynomials in the idgat
ry+4yz+2xz+3y° —22andfs = y*> —1lzz —3yz — 5 2%

Z2

7
22

7

-1
-5

In degrees the first idea is to construct the matrix:

m3 x2y ny y3 x2z
zfs (0 0O 0 0 1
yfs [ 0 1 18 19 0
zfs | 1 18 19 0 8
zf2 | 0 0 0 0 3
yf2 | 0 3 7 8 0
z fo 3 7 8 0 22
zfi | 0 0 0 0 6
yfi {0 6 12 4 0
zfi \6 12 4 0 14

To triangulate the matrix the first operation might be to difpp
rows x fo andz f; with the rowx f5. But this this is a waste of
time since this as already be done in the previous step: $tamce

fa = —f2+3f3, sothate f4 = —x f2+ 3z f3. This is an important
idea of the Buchberger algorithm: try to reuse as much asigess
the previous computations. It is also clear that we shoutdond
into the matrix f; and fs since they are linearly depends. So we

construct a matrix withfs (resp. f5) instead off> (resp. f1):

3

T x2y ny y3

M

zf3 18
yf3
zf3
zfa
yfa
z fa
2f5
yfs
zf5

After triangulation
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1’3 ZE2y ZEy2 y3 ZE2Z TYz y2Z 1’22 y22 23
ofs /1 18 19 0 8 5 0 7 0 0
yfs 1 18 19 0 8 5 0 7 0
yfo 1 3 0 2 4 0 22 0
xfa i 0 o0 8 1 18 15
zfs 1 18 19 8 5 7
zfa 1 3 2 4 22
zf1 1 12 20 18
vf1 1 11 13
xfy 1 18

So we have constructedinew polynomials (black bold font). For
instancefs = y> + 8y%z + x2? + 18y2% + 15 2z* and we recall
that this polynomial comes from the rawyf, or equivalentlyz fs.
In degreed there is a new interesting point: the matry whose
rows are
x2fi7xyfi7y2fi7xzfivyzfivz2fi7 1=1,2,3

is not full rank ! (this correspond t8 useless pairs in the Buch-
berger algorithm). The reason is thatfs — fsfo = 0 or written
differently:

322 f3+ (T+b)xy fs+8y2 fs+22x2 f3 + 1lyz f3 + 2222 f5

—22 fo — 182y fo—19y2 fo —8uzfo—byzfo—T722f2 =0
Hence we can remove the raw fo from A4. By using fifs —
fafi = 0 we can remove in the same way f; from A4. Since
there is another relatiofy fo = f2 f1 we know that there is another
useless row in the matrid4. Suppose that we return to the original
problemS; with b € {0, 1}; we have

0 = (fofi—fif2) =3(fsfr — frfs)

0 (f2=3fs)fr— fifo+3f1fs

0 = fafi—fifo+3f1f3

0 = ((1—b)xy+4yz+2xz+3y2—zQ)fl

—(622 4 ) f2 +3(62% 4 ) f3

We deduce from this equality that we can remavef; from A, if
b # 0 andy z f1 if b = 0. In other words it is impossible to know
without computation which row is useless (since it dependthe
value ofb). On the other hand a combination of the trivial relations
fif; = f;fi can always be written:

u(fafr — fife) +v(fsfr — fifs) + w(fafs — fsf2)
whereu, v, w are arbitrary polynomials. This can be rewritten

(ufa+ovfa)fi —ufifo —vfifs +wfefs —wfsfo

Hence all the (trivial) relatiork f1 are such that is in the ideal
generated byf> and f3. So it is easy to remove lines if we have
already computed a Grobner basis(¢f, f3). More precisely we
can always remove the rows f; wherem is a monomial divisible
by the leading term of an element &f( f2, ..., fm). If Gprevis
an already computed Grobner ba&fs, . . ., f») and we want to
compute a Grobner basis 0f: ) + Gprev then we will construct ma-
trices whose rows are f such thatn is a monomial not divisible
by the leading term of an element Gfrev.

To finish this examplei = 0) and in order to reuse the previous
computations we have to apply the following simplificatiater(in
that order):

xfo—fo fo— fa
zfi— fs yh— f7
fi—=1fs

Now the rows of the matrixd, are
yf77zf87Zf77Z2f57yf67y2f47zf67yzf47

z2f4,x2f3,xyf3,y2f3,aczf3,yzf3,z2f3,
HenceA, is almost a triangular matrix excepbax 5 block:



2 2,2 3 3 4

TYz y-z xrz yz z
22fa 1 3 2 4 22
22 f5 0 1 12 20 18
z2fr 0 0 1 11 13
2fs 0 0 0 1 18
yf7 1 11 0 13 0

The reduction of the matrix give us a new polynomfal = z*.
Remark that none useless pair (a line in the matrix reducizgto)
has remained.

The conclusion of this example is that in order to reuse tlegipr
ous computations in lower degrees: first we need to give aueniq
“name” or “signature” (see section 4) to each row of the matri
(for instance the true name of the rowg,, fs is z f1 in the pre-
vious example).The second thing is that we have to implertient
simplification rules (see section 6).

3. STANDARD NOTATIONS

In the rest of the paper we suppose that all the polynomiats ar
homogeneous and that the coefficients of the polynomialsare
field.

We use the notations of [2] for basic definitiorss:is the ground
field, P = K[z1,...,z,] is the polynomial ring.N is the set of
non negative integers. We denote Byz1, ..., zx), or simply by
T, the set of all terms in these variables. We choasen admissi-
ble ordering orl". If t = x7* - -z € T, then thetotal degree
of ¢ is defined as ddg) = >, as. Now let0 # f € P, so

thatf = > c(aa,...,an)z]t - 25" (Wherec(au, . .., a,) are
elements ofC). Thetotal degreeof f is defined as
ded f) = maz {a1 + -+ an | c(a1,...) #0}.

We use the notation HT) (resp. HM f), HC(f)) for the head
monomial(resp.head termhead coefficient of f.

Let f, g, p € P with p #£ 0, and letF’ be a finite subset gP. Then
we say thatf is reducible moduld® if there existyy € P such that
f—a9f % g is the reflexive-transitive closure efP—>. If Gis

a Grobner basis then NF, G) = g where f % g is thenormal

formof f w.r.t. G. TheS-polynomiabf f andg is defined as
Spol(f,g) = HC(Q)#(JI)f —HC(f) HTT(g)g
wherer = lem(HT(f),HT(g)).

4. SIGNATURE OF A POLYNOMIAL

Let (fi,..., fm) be a polynomialn-tuple (an element of the free
module”™) and! the ideal generated byfi, ..., fm). The goal
of this section is to associate a unique and canonical “sigeafor
all the elements of () that is to say all the leading terms of all
the polynomials in the ideal.

In the following F; is the canonicai-th unit vector inP™. We

consider the evaluation function:
pm™ P

m
| e=@m) — D fin
=1

We havev(F;) = f; andg = Y.i", ¢:Fi. An m-tupleg =
(g1, -..,9m)is called assyzygyif v(g) = 0. The so callegyrincipal
syzygiess; ; = f;F;— fi;F; are syzygies. The set of all syzygies is
amodule and abbreviated by Syz (for more information on gigsy
we refer to [2] or to [1]). Let PSyz be the module generated by
the principal syzygies. For a generic (random) polynomyatesm

—

(f17 L) fm), SyZZ PsyZ
We can extend the admissible orderiago P™ with the following
definition:

> gk Fr <Y hFyiff
k=i k=j 1 =jand HT(g;) < HT(hs)

In particular we hav&®; > F2 > --- > F,,. Forallg € P™
there is an index such thatg = ;. g« F with g; # 0. This¢
will be denoted as thindexof g, index(g). For the new ordering
< we have

1 >jandh; #0
or

HT(g) = HT(g:)F:
We define the degree ef = >"7" | ¢:F, dedg) by
mazx {ded(¢;) + ded f;) fori € {1,...,m}}
Let T; be {tF; |t € T} sothat HTg) € Ti. T = U2, T; will
be the set of the index of all the polynomials in the idéal Of
course ift € T, W(t) = {g € P™ | HT(v(g)) = t} can contain
more than one element so we have to choose one of them:

PROPOSITION 1.

—

Letw be ( T

t —

Pm
min< W (t) )
If (t1,t2) € T(I)?, then HTw(t1)) # HT(w(t2)) if t1 # ta.

COROLLARY 1. For all the polynomialsp in the ideal I we
definewv; (p) to be HTw(HT(p))). If p1 and p> are two polyno-
mials of I with distinct head terms (Hp1) # HT(p2)) we have

v1(p1) # v1(p2)-

In the following algorithmFs, v1 (p) will be the “signature” of the
polynomial p: it is unique and does not depend on the order of
the computations. We need to store these data in the inteapal
resentation of a polynomial. Mathematically the represion of
polynomials willbeR = T x P. If r = (tF;, f) € R we define:
poly(r) = f € P
S(r) =tF;, €T
index(r) =1 € N
We will see that during the execution of the algorithm theperty
S(r) = vi(poly(r)) is conserved. We say thatc R is admissible
if there existsg € v~!(poly(r)) such that HTg) = S(r). Let
0 e KveT, t=wF, € Tandr = (uF;,p) € Rwe
defineAr = (uF;, Ap), vt = (vw)Fy andvr = (uvF;, vp). We
do not define an addition. We also extend the definition of lusua
operators taR:
forr € RHT(r) = HT(poly(r)).
for r € RHC(r) = HC(poly(r)).
forr € RandG C P,NF(r,G) = (S(r), NF(poly(r), G)).

5. NEW CRITERION

DEFINITION 1. Let P be a finite subset aR, andr € R, and
teR.If

poly(r) = Ziep mpp mp € P

we say that it is &-representatioof » wrt P if HT(¢) > HT(mp)
andS(r) > S(mpp) for all p € P. This property will be denoted
as f = Op(t). We use the notatioff = op(t) if there exists
t' € R such thatS(t') < S(t) and HT(¢') < HT(¢) such that
f=0p(t).

DEFINITION 2. We say that € R is normalizedif S(r) =
eF ande is not top reducible by d(fx+1, ..., fm).
We say thafu,r) € T x R is normalized ifur is normalized.
We say that a paifr;,r;) € R? is normalizedif S(r;) < S(r;),



(ui, r:) and (u;, r;) are normalized where

Ti; = lem(HT(r;), HT(r})), u; = —LH?(M U = —LH;E;";).

THEOREM 1. LetF = [f1,...
LetG = [7’17“4

, fm] be a list of polynomials.
,Tne| € R™C such that

(i) F C poly(G). Letg; = poly(r;) andG1 = [g1, .- ., gng]-

(i) all the r; are admissiblei(= 1,...,ng).

(i) for all (i,7) € {1,...,ng}, such that the pailr;,r;) is
normalized then spé;, g;) = oa, (usr;) (or 0) whereu; =
Lem(HT(gi),HT(g;))

HT(r;)

ThendG, is a Grobner basis of.

PROOF Let f be an element of = Id(G1). We definey =
{(s,0) € P"¢ X Sn| 3206 8i90(i)) = f andS(siro1)) >
S(s2r4(2)) > - }. We define a new orderin@, o) <1 (s’,0”").
We use the notation = (S(s175(1)), S(5270(2)),--+) andv’ =
(S(s1707(1)), S(s5767(2)), - -+ ). We define(s, o) <1 (s',0") if
one of the following conditions is true

() 0 <iew V'

(i) =0 andmaziHT (sigo (1)) < maziHT(s}go(s))

(i) v = o andt = mazHT(sigo(;)) = maziHT(sig0/(s))
and#£{i | HT(sigo (i) = t} < #{i|HT(sigor(1)) = t}
We takes = min<, V. Wlog we may assume thatis the identity
(by renumberingz) Lett = maz;HT(s;g:) andZ = {i | HT(s;9:) =
t}, r = #Z. Suppose for a contradiction that> HT(f). Nec-
essarilyr > 2. Suppose that there existsuch that(s;,r;) is
not normalized. That is to sa§(r;) = uF) and HT(s;)u €
HT(Id(fr+1,-- -, fm)). Sincer; is admissible, one can wrigg =
E;n:k Wy fj such that Hka) = Uu.
$iWk =1+ 270 o 5y <k, AiPOY(9)
with HT(r) < HT(s;wx) and HT{A;poly(g)) < HT (uxu). Then

f=222i%9+ Szwkgk + 2k SiW;i G5

=D si0 gk + Z

JF#i reG S(r)<Fy

)+ Z SiW;9j

j=k+1

grA;jpoly(g

This expression i< s and there is a contradiction. Therefore all
the (s;, ;) are normalized.
Letw = max{S(siri)|,t € Z} andJ = {i € Z|S(siri) = w}.
If #£J7 > 1, since ther; are admissible then for alle 7, r; =
Doy Wi fi WIth HT (wi 50 ) Fj, = w. We can writef as follow:
f= E'L<min1 Signi + (Eie] 8iWi, 5o ) Gjo

(X ieq 2 jot1 Wiidi T 2ismant 5i9i)
so we find another expression pfvith is <; thans. Consequently
#J = 1andletk € J andl € Z\{k}. By construction we have
S(sir1) < S(skri). We write f as follow:

f=srgr — HC((s sigt + [1 + HHC(ssk)] sig1 + Zi#k,l Sigi
Let mp = HM(Sk) andml = HHE((SSR)HM( ) andsli = 8§; —
HM(s;). Hencet = HT(mwrgr) = HT(mug:), and consequently
Ti, = lem(HT (g ), HT(g:)) dividest, that is to say:

Mmige — Mg = Hcisk)tSPOZ(gmgl)

Since(sk, gx) and(s;, g;) are normalized we deduce thaf, g:)
is normalized, so that
Mgk —muge = 50c (UkTk)

= OG(SM%)

Tk,1

Whereuk = W

Hence
f = oc(skre) + shgr — ,%C(;’ﬂ—slgz +asigi+ 3,45, 5iGi

wheres; = s; — HM(s;) (HT(s;) < HT(s;)) anda = 1 +
':%(SS’;)) € K. This is a new expression gfwhich is<; s. This is

a contradiction and < HT(f). So we can reducg by an element
of Gi. f ? 0. O
1

REMARK 1. Inthe theorem if we restrict (iii) to the critical pair
of degree less thas we make the proof thak is Grobner basis up
to degreed.

6. SIMPLIFICATION RULES

We describe now how to implement the simplification rules (fo
instancexF2» — fs andF2 — f4 in the previous example).

We use an array Rule to store the rules. Each element of Rale is
list of elements ofl" x N. At the beginning there is no rules:

Reset simplification rules
Input: m the number of polynomials

fori:=1,2,...,mdo
Rulei] :== 0
Add Rule (rx = (p,tF;) € R)

Rul€fi] := concat([[t, k]], Rulei])
The following procedure try to simplify a produatx ry:

(p,tF;) € R)
s [tr, K]

Rewritten (u € T aterm,ry =
L := Rul€i] = [[t1, k1], - .-
fori=1,...,rdo

if ut divisible byt; then
return (44,7, )
return (u,ry)

The following function returrtrue if the u x r, can be rewritten
differently.

Rewritten? (u € T aterm,r; =
(v, ) := Rewritter(u, ry)
return [ # k

Example: Ifry = (F2, f4) andrs = (zF2, fs) as in the previous
example themMddRule(rs) and AddRule(rs) add two new rules
zF, — fe andF2 — f4. Now Rewritter{z y, r4) returns(y, r¢)
and Rewritten@y?, r4) returnstrue.

(p,tF;) € R)

7. DESCRIPTION OF THE ALGORITHM

7.1 The main algorithm
Since the algorithm incrementafthe main loop of the algorithm
iterates on the number of polynomials:

Algorithm incremental F5
. JF = (f,..., fm) alist of homogeneous
Input: . . L X
polynomials and jan admissible ordering
N := m (the number of polynomials,, ...,y occurring in
the algorithm)
Reset simplification rulesn).



Tm = (Fm, fm) € R, G = [rm]

for i :== (m — 1),...,1 (in that order)do
Gi = AlgorithmF5(i, fi, Gi+1)

return poly(G) = [poly(r) | r € G1]

In this algorithm the critical pairs are oriented:

DEFINITION 3. The critical pair of(r1,72) € R? is
CritPair(r1,72) = (lempy g, w1, 71, u2,72)

(this is an element &> x R x T x R) such that:
lem/(CritPair(r1,72)) = lemyy ry
= U1 HT(’/’l) = uQHT(’r’Q)
= lem(HT(r1),HT(r2))
and
S(uﬂ"l) - S(UQTQ)
We say that the degree of such a critical paidigy(lcmyr, r, ).

The basic version of our algorithm is now described. To sifyipl
the presentation, we make the choice to describe the digosim-
ilarly to the description of the Buchberger algorithm, ttsato say

using polynomials and not linear algebra. However, frometffie
ciency point of view, it is recommended to translate the adgm

in a F4 [6] fashion. The only structural difference with a standard

Buchberger algorithm is that the reduction of one polyndmwia

a list of polynomials may return several polynomials. Thgoal
rithm uses3 auxiliary functions: the definitions of “CritPair” (con-

struction of critical pair if the new criterion cannot applySpol”
(construction of the Spolynomial), and “Reduction” (retioc of

polynomials wrt the current list) are postponed until thd efithis

section:
Algorithm F5
¢ an integer and’; a polynomial
Input: Gi+1 afinite subset of R

such that polyG;1) is a Grobner basis
of [d(fi+1, ey fm)
riv=(Fi, fi)€R
pit1 = NF(., poly(Giy1))
Gi:=Git1 U {T,}
P := Sort[CritPair;, 7,4, i+1) | r € Gi+1]) by degree
while P # 0 do
d := deg(first(P))
Py :={p € P|deg(p) = d}
P:=P\P;
F := Spol(Pa)
Rgq := Reduction(F,Gs, 1, pit1)
forr € Ry do
P := P U {CritPair, p, i, pi+1) | p € Gi])
G, :=G;U{r}
P := Sort P for the degree
return G;

7.2 New criterion: implementation

We can now define the construction of a critical pair whichlieap

ments the new criterion:

Algorithm CritPair  (r1, 72, k, )
k an integer
Input: < r1,r2 polynomials inR
@ a normal Form

pi := poly(r;) fori = 1,2
t ;= lem(HT(p1), HT(p2))
U = chrz_ 172
if u1S(r1) < u2S(r2) then
return CritPair (r2,r1, k, )
tiFki = S(T,) for: = 17 2
if k1 > k then return 0
if (p(uﬂfl) 75 w1t then return @
if ko = k andp(uata) # uats then return (
return [t, w1, 71, u2, 2]

Algorithm Spol
Input : {P = [p1,...,pxn] alist of critical pairs
p anormal Form
Letpl = [thul,ri”w,rh] forl = 1,... ,h
F:=0
for [ from 1to hdo
it and (not RewrittenPu;, 73, ))
(not Rewritten®u;, 75,))
N:=N+1
rn = (wS(ry,), wi poly(ri,) — v poly(r;,))
Add Rule(ry)

then

F:=FU {TN}
F := SortF by increasingS
return F

7.3 Reductions of polynomials

A major difference with Buchberger algorithm is that theuetibn
of a polynomial wrt a list of polynomials may return severalyp
nomials so we have to modify the standard Reduction functian
use an auxiliary function TopReduction to perform an eletagn
reduction step. The result of TopReduction is a §ait?") where

r € RandF’ a list of polynomials.F’ = () means that: is irre-
ducible (or zero). IfF” # § (thenr = () and it means that we have
to rerun TopReduction on all the elementsret

Algorithm Reduction
ToDo a finite list of polynomials
G a list of polynomials ofR
k an integer
@ anormal Form
Done := 0
while ToDo # () do
h := the minimal ofToDo for S
ToDo := ToDo\{h}
(h1,ToDoy) := TopReduction(e(h), G U Done, k, @)
Done := Done U h;
ToDo := ToDo U ToDo;
return Done

Input:

To implement TopReduction we need a function to test thesdivi
bility of the leading term of polynomial wrt a list of polynadais.
The result is a reductor drif it is (top) irreducible.

Algorithm IsReducible

ri, @ polynomial ofR

G =[riy,...,9:.| Whereg; € R
k an integer

p anormal Form

thkj = S(n])j = 0,1, s, T

for j from 1tordo

Input:



if all the following conditions are true
_ HT(Tio)

@ u= W isaterm (i.,ew € T)
(b)  p(uty) =ut;

(c) not Rewritten®u, ;)

(d) uthkj #* toFx,

then return r;,
return 0

It is easy to give an interpretation of the four conditions:

(8) the usual divisibility test.

(b) testthe new criterion(u, 7;; ) is normalized.

(c) testif we can use a previous computation to avoid
a waste of time (see the example in section 2).

(d) remove identical rows in the matrix.

Algorithm TopReduction
T%, & polynomial ofR
G alist of polynomials ofR
k an integer
 a normal Form
if poly(rx,) = 0 then
Warning “the system is not a regular sequence
return (0, 0)
r’ = IsReducible(rk,, G, k, )
if 7' = (0 then
return (m Tho, 0)
else
Ty =1
_ HM(rko)
U By €L
if uS(rk,) < S(ry,) then
poly(ri,) = poly(rk,) — upoly(rx,)
return (0, {rk, })

Input:

”

else
N :=N+1
N = (uS(7k,), upoly(ri, ) — Poly(ri,)) € R
Add Rule ¢n)

return (@, {rn, 7k, })

7.4 Proof of the algorithm

Let R be the set of all the polynomials occurring in the executibn o
the algorithm. In the following we give a proof of the termiioza

in a restricted case (when there is no reduction to zero)thst i
possible to modify slightly thé’; algorithm so that we can always
ensure the termination of the algorithm in all the cases.

PROPOSITION 2. For all » € R, r is admissible.

PrROOF By induction onm. Thenr; = (F1, f1) is obviously
admissible. The operation to construct a newe R is r’ =
(S(ry),poly(ry) — upoly(r;)) whereS(ry) > S(ur;) andry,
admissible. Hence we can write = > si; f; (i = k,1)
such that HTs;,1)F1 = S(r:). Hence polyr’) = 377, (sk,; —
usy ;) fj and HT(sk,1 — usi,1) = HT (sg,1). v’ is admissible. [

PrROPOSITION 3. If G;41 is a Grobner basis of
Id(fi41,.-., fm), thenall the polynomials occurring in Algorithm
Fs(1, fi, gi+1) are normalized.

THEOREM 2. We suppose that all thg are homogeneous and
that there is no reduction to zero. For al| the result of Reduction
in the algorithmFs is Rq. ThenId(HT(G:)) # Id(HT(G;URg)).

COROLLARY 2. This makes the proof of the termination of the
algorithm F.

PrROOF Wlog we can suppose than= 1 in the algorithmFs
and G. the result of the algorithm ofifz, ..., fm]. LetuF; be
the maximum of{S(r) |r € R4}, so there exists € Rq such
thatS(r) = uF1. Suppose for a contradiction that thererise
G1 U Ra\{r} such thatu = JT € T. If uS(x) is not top
reducible byG, then

a) if uS(r’) > S(r) then the critical pair
(r',r) = (u,r’,1,r) was introduced in the list and since
there is no reduction to zera’ € R,. This is a contradic-
tion sincer was the maximum.

b) if uS(r') < S(r) thenr’ can be reduced by. Contradiction.

We have to study now the cas&(r’) top reducible byGs. Since
r’ is admissibler’ = Y7 sif; with HT(s1)F1 = S(') and
usy = v+ >, mAifs with v < HT (us?)

=usifi + >0 usifi

=vfi + 37 (Nifr +usi) fi

Let 7 = {HT(¢tf1) > HT(r)|t € T(v)}. If T is non empty
then for allt € 7, (¢, f1) is normalized so that it should have
been put in the list of critical pair. In the reduction prosese
find a polynomialr’” such thatS(r”) = v and HT(r") = HT(r).
Contradiction. If7 = (), HT(r) = HT(¢f;) for somet € T'(v) so
we can reduced by f;. O

upoly(r’)

THEOREM 3. For all d, the result of the algorithni’ is a (non
reduced) Grobner basis up to degrée

PROOF The proof is by induction om the number of polyno-
mials. We suppose that, is a Grobner basis up to degréeand
we want to proof that7; is a Grobner basis up to degréeFor all
(r,7") such as in theorem 1, let’ be the result of the reduction of
spol(r, ') by G1. Let belem(HT(r),HT(r')) andu be T2
We have

S(r'") = uS(r)
and HT(poly(r"")) < lem(HT(r),HT(r")) < uHT(r)
so that

spol(r,7’) = r" + o, (ur) = ogu, (ur)

From proposition 2 and proposition 3 we can apply theoremdl an
we deduce that7, is a Grobner basis of the ideal generated by
(f1,..., fm) (upto degreel). [I

THEOREM 4. If the algorithm finds a reduction to zerg,, —
0 then there exists € SyaPSyz with HTs) = S(rs,).

PrROOF We may suppose wlog th&i(r;,) = tF; for some
t € T. Now for alls € PSyz with indexs) = 1 we have



s =X Z;n:i+l AijSi,j
=i 2 Mg [iFe = 2000 DT A fiF
=2 A fiF1+ 3000 )F
Consequently Hls) = HT(37", Ai,; f;)F1, thatisto say HTs) €
Id(fa,..., fm). Hence ifr,, = 0, thenS(r;,) = HT(s) for
somes € Syz. Sincer;, is normalized HTs) & Id(fz,..., fm),
hences ¢ PSyz. [

COROLLARY 3. If the input system is a regular sequence there

is no reduction to zero.

8. EXAMPLE

We compute one example from [10] in full. We are using the De-

gree Reverse Lexico ordering> y > z > t and the coefficients
are rational numbers.

fz = xy — 2%

fo =x2? — %

f1= y23 _ 242
The algorithm computes successively Grobner basegof (fs, f2)
and( fs, f2, f1). Since the last computation is the most difficult we
may skip these first steps. The corresponding Grobner laases

Gy = [7’3] andGsy = [7’377’2,7“4,7“5] Whererg, = (Fg,fg), Tro =
(Fa, f2), ra = (:vag,xy?’t - z4t), rs = (xy22 Fo, 2%t —
y*t?).

w2 = NormalForn{., [rs, 72,74, 75])

ri = (F1, f1)

G1 =G U {7‘1} = [7‘3, T2,7T4,75, 7“1]

There are four critical pairsp; = (zy 23 2,71,y 2,72), ps =
(2% y 23,22, 71,25, r3),p0 = (y2° ¢, 2%, r1,9,75),

po = (xy® 22t xy?t,r, 2%, ra). S(pr),...,S(p1o) are resp.
zF1, 22 F1, 22 Fy, zy? Fy are all invariants byps.

P = [p7, ps, P9, P1o]

, enter SpC(lP5) with Ps = [p7] andP = [p87p97p10]

re = (xF1,y° 2t — 23t%) and F := [r¢]

We add anew rule F; — rg

There is obviously no reduction of by G so the returned result
is R5 = [7‘6]

G1 = [7’37 r2,T4,75,T1, 7'6]

We update the list of critical pairsp1; = (y3 23t 2%, 76,37 ¢,
r1), p12 = (3 2%¢,25 re,v%,75), p13s = (w9 2t, 2,76, 2, 74),
pia = (@2 y* 2t, 2%, r6,y% 2t,73), p15s = (zy* 22 t,x 2,76,y t
,72). We check thalS'(z2 re) = 22’ Fy andS(z5 re) =T 25 Fy
are reducible by- so that the pairg:1 andp:» are rejected. Hence
P = [ps,p9, p10, P13, P14, P15).

, enter SpC(lPa) with Ps = [pg,plg]

andP = [pg, p10, P14, P15)

We check that Rewrittgn:?, 1) = (x, r6) SO we do not keeps
For the other paip:3: Rewritten?z, r¢) = false and
Rewritten?z,r4) = false so thatr; = (2> F1, 2°t — 21 ¢?)

We add a new rule®* Fy — 77

There is obviously no reduction of by G so the returned result
is Re = [T7]

G1 = [r3,T2,T4,75,71,76,77]

Among all the critical pairs we check as usual that, 1), (r7,76),
(r7,r3) and(r7,r4) are not valid.

The new critical pairs arg1s = (2°t,2,77,1,75) andp17 =
(x2°t,x,77, 2%, 12).

[d = 7], enter SpdIP;) with

P7 = [p15, D16, P17, p14] and P = [pg, p1o]

We check that Rewrittdn: z, 76) = (z,7r7) S0 we do not keepis
p16 is valid andrs = (22 2 F1,9° t* — 2 2 t?) is computed

We add a new rule? z F1 — rg

p17 is valid andry = (2% F1, —2° t? + y? 2° t?) is computed

We add a new rule® F; — rg

We check that Rewrittg:?, rs) = (1,79) So we do not keep14
There are two Spolys to redu¢e= [rs, ro]

The elements of” are not top reducible bg; as described in the
algorithm but it is possible téully reducers by 4 t% x r1: ro =
(z3 F1, —2° t* 4+ 22 yt*) and the final result isg = —p2(r9) =
(23 F1,2°t? — 22 t5)

The result of Reduction i®; = [rg, rs]

G1 = [r3,T2,74,75,71,T6, 77,78, I'0]

The critical pairs(rg, 7“1), (Tg, 7“6), (Tg, 7“7), (Tg, 7“2), (Tg, 7“3), (Tg, 7“4),
(’f’g7 Ts), (Tg, 7’1), (’f’s, Ts), (Tg, 7’7), (’f’s, T9), (’f’s, 7’2) and (’f’s, 7’5)
are not valid.

The new critical pairs argis = (xy° t*, x, s, y* t,r4) andpig =
(x®y5 12,22 rs, y* t2,73).

[d = 8], enter SpdIPs) with

Py = [po, p10, p1s] and P = [p1o]

po is valid andrio = (2* t F1,y%t? — 22 23 %) is computed

We add anew rule® t F; — rio

We check that Rewritte: y2 t,71) = (> t,76) SO we do not keep
P10

We check that Rewrittdr:, 73) = (z,r9) SO we do not keepis
Nowrio = @2(r10) = (2%t F1,y5 t* —xy? 2 t*) is fully reduced,
the result isRs = [r10].

G1 = [r3,r2,74,75,71,T6, 77,78, 9, T10]

All the new possible critical pairrio, ;) (i = 1,...,8) are re-
jected

, enter SpdlPy) with Py = [p1g] andP = ()

We check that Rewrittdn:?, rs) = (x z, 79) SO we do not keepio
F=0andRy =0

The algorithm stops and returgs .

Remark that no useless pair has remained. With the Buchberge
algorithm (resp. the algorithm [10]) there wagresp. 1) useless
pairs ands (resp.5) useful ones.

9. EXPERIMENTAL RESULTS

9.1 Number of useless pairs

This is interesting to compare the number of useless dripiaias

in practice for the various algorithms because this numbesahot
depend on the implementation (at least for fyealgorithm). The
first line of the following tabular (figure 9.1) contains dilet ex-
amples of [7] and [10] the other are well known. Note that redu
tions to zero are unavoidable fdr i nks7 (7 equations, 6 vari-
ables). The table brought tHeco n to our attention since the
number of useless pairs is not zero: we found that the system c
be straightforwardly rewritten by factorizing the origirguations.
By reformulating these problem we obtain an equivalentesyst
Eco n fact with no reduction to zero ! The conclusion is that
for a lot of practical examples there is no reduction to zero.

9.2 Firstimplementation

A firstimplementation of thé’s has been made in the Maple com-
puter algebra system and then translated in Gb (C++) and EEb (
From a traditional implementation of the Buchberger aldoni it

is very easy to implement the new algorithm: the only datatyp
to modify is to add to the property list of each polynomiabn
integer (the indext: of r) and a power produat (S(r) = rFy).
Hence the extra memory cost is very small. The behavior of the
algorithm is very good: it is at least one order of magnituaktdr



Example | [5] [71 | [10] | F5 remark
Raksanyi 1 ? 0 0
Hairerl 10 ? 4 0
Rose 22 19 ? 0
Trinks6 17 8 6 0
Trinks7 12 11 6 4 | over constrained|
Katsura3 1 ? 1 0
Katsura4 18 10 7 0
Katsurab5 50 28 ? 0
KatsuralO| 3936 | ? ? 0
Binaryl0 | 2147 | ? ? 0
Noon8 7886 | ? ? 0
Eco 6 61 ? ? 7 see text
Eco 6 fact| 63 ? ? 0
Eco 8fact| 315 ? ? 0

Fig 9.1: Number of useless critical pairs

Cyclic | 7 8 9 10
Fy 1.26 | 36.0 | 4949.1

Fyinc | 1.4 | 171.3
Fs 1.0 | 27.9
F 0.4 | 7.2 | 1002.3| 57600
Fy 0.8 | 3.95 | 676.2

Fig 9.2: Comparison of; and F; for the Cyclicn problem
modulop (Inspiron PIIl 1Ghz): CPU Time in seconds.

than the fastest known algorithm/implementatiéfa)(and two or-
der of magnitude faster than one of the fastest programg(&in
2.0 [8]). In tabular 9.2 we give the timings for the well known
cyclic n problem: a Grdbner basis of Cyclic 10 was computed for
the first time.

In table 9.2 'Fy inc” is the F, algorithm applied incrementally.
“F¢" and “FY'" are different version of theé algorithm that will
be described in a future paper. We report now detailed CPligisn
for the Katsuran problem modulo a small primg (there is no

useless pairs for this example).

The algorithmFs5 is not always faster thafy: for cyclic n the ba-
sic version of theFs algorithm is just a little faster thafy; the
maximal efficiency of the's algorithm is expected when the num-
ber of equation is less or equal than the number of varialaghe
contrary bad performance is expected when the system isawver
strained: for instance compute a Grdbner basis for a tagted
and then rerun thé&s algorithm on the result.

In the following tables 9.2 we compute the speedup: for imsta
O Si ng/ &o is the CPU time for the old version of Singular (1-2-
3) divided by the CPU of Gb on the same example.
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n | Singular| Gb Fy Fs Singular
2-0-0 1-2-3

7 1.6 2.2 0.4 0.15 3.1

8 13.6 22.25 2.8 0.8 36.4

9 135.3 252.5 23.1 4.1 411.2

10 | 1140.2 | 2907.1| 220.2 | 25.5 | 4311.8

11| 11671 | 34903 | 2097 174.2 | 58174.6

12 25161 | 1460.7

13 240667 | 10748

Fig 9.2: Katsura n Pl 400 Mhz (CPU time in seconds)

10.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

n | Fu/Fs | Sing/Gb| Gb/F, | O Sing/Gb| Sing/Fs
7 2.7 0.7 5.2 1.4 10.6
8 3.3 0.6 8.0 1.6 16.4
9 5.6 0.5 10.9 1.6 331
10| 8.6 0.4 13.2 1.5 44.8
11| 12.0 0.3 16.6 1.7 67.0
12| 17.2

13| 224

Fig 9.2: Katsura n Pl 400 Mhz (Speedup)
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