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ABSTRACT
This paper introduces a new efficient algorithm for computing Gröbner
bases. We replace the Buchberger criteria by an optimal criteria.
We give a proof that the resulting algorithm (calledF5) generates
no useless critical pairs if the input is a regular sequence. This a
new result by itself but a first implementation of the algorithm F5

shows that it is also very efficient in practice: for instanceprevi-
ously untractable problems can be solved (cyclic 10). In practice
for most examples there is no reduction to zero. We illustrate this
algorithm by one detailed example.

1. INTRODUCTION
Solving polynomial systems is an important part of ComputerAl-
gebra since a lot of practical problems (cryptography, robotics, ce-
lestial mechanics, error correcting codes, signal theory,. . . ) can
be solved with these algorithms. Among all available methods
for solving polynomial systems, computation of Gröbner bases re-
mains one of the more powerful. Historically, the Buchberger al-
gorithm was the first algorithm for computing such Gröbner bases.

It may eventually be possible to suggest two improvements for the
Buchberger algorithm [3, 4, 5]. The first improvement is concerned
with strategies: during a Gröbner computation, several choices can
be made (select a critical pair, choose a reductor) this aspect of the
problem is not directly studied in this paper, but is implemented in
other algorithms (F4 [6] for instance). The other open issue was
to remove useless computations: since90% of the time is spent in
computing zero it is a very challenging question to have a more
powerful criterion to remove useless critical pairs. This is precisely
the goal of this paper to give a theoretical and practical answer.

In [9] the link between the computation of a Gröbner basis ofF =
[f1, . . . , fm] and linear algebra is done: the Buchberger algorithm
can be considered as a triangularisation of a submatrix of the sylvester
matrix. The reduction of a polynomial to zero can be interpreted as
a linear dependence of the rows of this matrix. Since each rowof
the matrix is a productt × f wheret is a term andf ∈ F , a linear
dependence is

P

λtf = 0 or by grouping terms:
Pm

i=1 gifi = 0.

In other words,(g1, . . . , gm) is a syzygy.

Several papers investigate those issues: Buchberger [4] proposes
two criteria to remove a lot of useless critical pairs; staggered lin-
ear bases are used in [7]; the idea of [10] is to compute simulta-
neously a Gröbner basis and a basis of the module of syzygies: a
critical pair is not considered if the corresponding syzygyis a linear
combination of some elements of the current basis of the module
of syzygies. They have in all in common to use implicitly or ex-
plicitly the trivial sysygiesfifj = fjfi. Another common point
is that all the algorithms are nearly Buchberger’s algorithm except
that some reductions are avoided. The efficiency of those algo-
rithms is not yet satisfactory in theory and practice because a lot of
useless critical pairs are not removed. For instance we quote from
[10] that “many useless pairs are discovered, but it involves a lot
of extra computation, so the execution time is increased”. Another
approch is involutive bases [11] which is based on the concept of
involutive monomial division: some reductions are forbidden and
so some computations are not considered.

The strategy in this paper is to take into account only the trivial
syzygiesfifj − fjfi = 0 but not to compute the module of syzy-
gies. This imply (see section 2 and 4) two major differences with
the standard Buchberger algorithm or theF4 algorithm: first we
need to computeall the Gröbner basis of the following ideals(fm),
(fm−1, fm), . . . ,(f1, . . . , fm). The second difference is that some
reductions are not allowed; as a result the reduction ofonepolyno-
mial by a list of polynomials may beseveralpolynomials. A con-
sequence of the restriction to trivial syzygies is that, in worst cases,
the algorithm does not avoid all the useless pairs: for instance if we
have two times the same polynomial in the original equationsthere
is a reduction to zero. However we give the proof (see corollary 3)
that if the input system is a regular sequences then there is no re-
duction to zero. Moreover, in practice, for most systems there is
no reduction to zero (experimental evidences are given in 9.1). An-
other important point is that the new algorithm does not improve
the theoretical worst case complexity for computing Gröbner bases
but experimentally (see section 9.2 for some some CPU timings
and comparison with other algorithms), theF5 is faster than all the
previously implemented algorithms. The limited length of the pa-
per impose us to make some choices: we give a full descriptionof
the algorithm and a detailed example but the proofs of correctness
and termination are only sketched. For the same reason the experi-
mental section 9 is minimal. A full paper describing the algorithm
in the most general case is in preparation.

The plan of the paper is as follows. The section 5 is devoted to
presenting the new criterion, and a theorem giving an equivalent



condition for a set of polynomials to be a Gröbner basis. There-
sulting algorithm is described in section 7. This section includes
also the proof of the correctness of the algorithm. In section 2 we
give the idea of the algorithm. The necessary mathematical nota-
tions (we make the choice to use the same notations as in the book
[2]) are reviewed in section 3. In section 8 we compute the example
from [10] in full. The name of this algorithm is simply algorithm
number5. In the rest of this paperF5 stands for this algorithm.

2. THE IDEA
We consider the following systems of degree2 in 3 variablesx, y, z
depending on the parameterb ∈ {0, 1}:

Sb

8

<

:

f3 = x2 + 18 xy + 19 y2 + 8 xz + 5 yz + 7 z2

f2 = 3 x2 + (7 + b)x y + 22 x z + 11 yz + 22 z2 + 8 y2

f1 = 6 x2 + 12 xy + 4 y2 + 14 xz + 9 yz + 7 z2

We want to compute a Gröbner basis off1, f2, f3 modulo23 for a
total degree ordering withx > y > z. This can be done with the
Buchberger algorithm (including the Buchberger criteria): there is
5 useless pairs and5 useful ones. First we suppose thatb = 0. To
compute the Gröbner basis, we proceed degree by degree. Forthe
degree2 there is no choice to construct the matrix:

A2 =

0

@

x2 x y y2 x z y z z2

f3 1 18 19 8 5 7
f2 3 7 8 22 11 22
f1 6 12 4 14 9 7

1

A

and after triangulation of the matrixA2:

B2 =

0

@

x2 x y y2 x z y z z2

f3 1 18 19 8 5 7
f2 0 1 3 2 4 −1
f1 0 0 1 −11 −3 −5

1

A

and we have constructed two “new” polynomials in the idealf4 =
xy + 4 yz + 2 xz + 3 y2 − z2 andf5 = y2 − 11xz − 3 yz − 5 z2.
In degree3 the first idea is to construct the matrix:

0

B

B

B

B

B

B

B

B

B

B

B

@

x3 x2y xy2 y3 x2z . . .

zf3 0 0 0 0 1 . . .
yf3 0 1 18 19 0 . . .
xf3 1 18 19 0 8 . . .
zf2 0 0 0 0 3 . . .
yf2 0 3 7 8 0 . . .
xf2 3 7 8 0 22 . . .
zf1 0 0 0 0 6 . . .
yf1 0 6 12 4 0 . . .
xf1 6 12 4 0 14 . . .

1

C

C

C

C

C

C

C

C

C

C

C

A

To triangulate the matrix the first operation might be to simplify
rows xf2 andxf1 with the rowxf3. But this this is a waste of
time since this as already be done in the previous step: for instance
f4 = −f2+3f3, so thatxf4 = −xf2+3xf3. This is an important
idea of the Buchberger algorithm: try to reuse as much as possible
the previous computations. It is also clear that we should not put
into the matrixf1 andf4 since they are linearly depends. So we
construct a matrix withf4 (resp.f5) instead off2 (resp.f1):

0

B

B

B

B

B

B

B

B

B

B

B

@

x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3

zf3 0 0 0 0 1 18 19 8 5 7
yf3 0 1 18 19 0 8 5 0 7 0
xf3 1 18 19 0 8 5 0 7 0 0
zf4 0 0 0 0 0 1 3 2 4 22
yf4 0 0 1 3 0 2 4 0 22 0
xf4 0 1 3 0 2 4 0 22 0 0
zf5 0 0 0 0 0 0 1 12 20 18
yf5 0 0 0 1 0 12 20 0 18 0
xf5 0 0 1 0 12 20 0 18 0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

After triangulation
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B
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B

B

B

B

B

B
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x3 x2y xy2 y3 x2z xyz y2z xz2 yz2 z3

xf3 1 18 19 0 8 5 0 7 0 0
yf3 1 18 19 0 8 5 0 7 0
yf2 1 3 0 2 4 0 22 0
xf2 1 0 0 8 1 18 15
zf3 1 18 19 8 5 7
zf2 1 3 2 4 22
zf1 1 12 20 18
yf1 1 11 13
xf1 1 18

1

C

C

C

C

C

C

C

C

C

C

C

A

So we have constructed3 new polynomials (black bold font). For
instancef6 = y3 + 8 y2z + xz2 + 18 yz2 + 15 z3 and we recall
that this polynomial comes from the rowx f4 or equivalentlyx f2.
In degree4 there is a new interesting point: the matrixA4 whose
rows are

x2fi, x yfi, y
2fi, x zfi, y zfi, z

2fi, i = 1, 2, 3
is not full rank ! (this correspond to3 useless pairs in the Buch-
berger algorithm). The reason is thatf2f3 − f3f2 = 0 or written
differently:

3 x2 f3 + (7 + b) xy f3 + 8 y2 f3 + 22 xz f3 + 11 yz f3 + 22 z2 f3

−x2 f2 − 18 xy f2 − 19 y2 f2 − 8 xz f2 − 5 yz f2 − 7 z2 f2 = 0

Hence we can remove the rowx2f2 from A4. By usingf1f3 −
f3f1 = 0 we can remove in the same wayx2f1 from A4. Since
there is another relationf1f2 = f2f1 we know that there is another
useless row in the matrixA4. Suppose that we return to the original
problemSb with b ∈ {0, 1}; we have

0 = (f2f1 − f1f2) − 3(f3f1 − f1f3)
0 = (f2 − 3f3)f1 − f1f2 + 3f1f3

0 = f4f1 − f1f2 + 3f1f3

0 =
`

(1 − b)xy + 4 yz + 2 xz + 3 y2 − z2
´

f1

−(6x2 + · · · )f2 + 3(6x2 + · · · )f3

We deduce from this equality that we can removex y f1 from A4 if
b 6= 0 andy z f1 if b = 0. In other words it is impossible to know
without computation which row is useless (since it depends on the
value ofb). On the other hand a combination of the trivial relations
fifj = fjfi can always be written:

u(f2f1 − f1f2) + v(f3f1 − f1f3) + w(f2f3 − f3f2)
whereu, v, w are arbitrary polynomials. This can be rewritten

(uf2 + vf3)f1 − uf1f2 − vf1f3 + wf2f3 − wf3f2

Hence all the (trivial) relationhf1 are such thath is in the ideal
generated byf2 andf3. So it is easy to remove lines if we have
already computed a Gröbner basis of(f2, f3). More precisely we
can always remove the rowsmf1 wherem is a monomial divisible
by the leading term of an element ofId(f2, . . . , fm). If Gprev is
an already computed Gröbner basis(f2, . . . , fm) and we want to
compute a Gröbner basis of(f1)+Gprev then we will construct ma-
trices whose rows aremf such thatm is a monomial not divisible
by the leading term of an element ofGprev.

To finish this example (b = 0) and in order to reuse the previous
computations we have to apply the following simplification rule (in
that order):

xf2 → f6 f2 → f4

xf1 → f8 yf1 → f7

f1 → f5

Now the rows of the matrixA4 are
yf7, zf8, zf7, z

2f5, yf6, y
2f4, zf6, y zf4,

z2f4, x
2f3, x yf3, y

2f3, x zf3, y zf3, z
2f3,

HenceA4 is almost a triangular matrix except a5 × 5 block:



0

B

B

B

@

xyz2 y2z2 xz3 yz3 z4

z2f4 1 3 2 4 22
z2f5 0 1 12 20 18
zf7 0 0 1 11 13
zf8 0 0 0 1 18
yf7 1 11 0 13 0

1

C

C

C

A

The reduction of the matrix give us a new polynomialf9 = z4.
Remark that none useless pair (a line in the matrix reducing to zero)
has remained.

The conclusion of this example is that in order to reuse the previ-
ous computations in lower degrees: first we need to give a unique
“name” or “signature” (see section 4) to each row of the matrix
(for instance the true name of the rowsxf4, f6 is xf1 in the pre-
vious example).The second thing is that we have to implementthe
simplification rules (see section 6).

3. STANDARD NOTATIONS
In the rest of the paper we suppose that all the polynomials are
homogeneous and that the coefficients of the polynomials arein a
field.

We use the notations of [2] for basic definitions:K is the ground
field, P = K[x1, . . . , xn] is the polynomial ring.N is the set of
non negative integers. We denote byT (x1, . . . , xn), or simply by
T , the set of all terms in these variables. We choose< an admissi-
ble ordering onT . If t = xα1

1 · · ·xαn
n ∈ T , then thetotal degree

of t is defined as deg(t) =
Pn

i=1 αi. Now let 0 6= f ∈ P , so
thatf =

P

c(α1, . . . , αn)xα1

1 · · · xαn
n (wherec(α1, . . . , αn) are

elements ofK). Thetotal degreeof f is defined as

deg(f) = max{α1 + · · · + αn | c(α1, . . .) 6= 0} .

We use the notation HT(f) (resp. HM(f), HC(f)) for the head
monomial(resp.head term, head coefficient) of f .

Let f, g, p ∈ P with p 6= 0, and letF be a finite subset ofP . Then
we say thatf is reducible moduloP if there existsg ∈ P such that
f −→

P
g. f

∗
−→

P
g is the reflexive-transitive closure of−→

P
. If G is

a Gröbner basis then NF(f, G) = g wheref
∗

−→
G

g is thenormal

form of f w.r.t. G. TheS-polynomialof f andg is defined as
Spol(f, g) = HC(g) τ

HT(f)
f − HC(f) τ

HT(g)
g

whereτ = lcm(HT(f), HT(g)).

4. SIGNATURE OF A POLYNOMIAL
Let (f1, . . . , fm) be a polynomialm-tuple (an element of the free
modulePm) andI the ideal generated by(f1, . . . , fm). The goal
of this section is to associate a unique and canonical “signature” for
all the elements ofT (I) that is to say all the leading terms of all
the polynomials in the ideal.

In the following Fi is the canonicali-th unit vector inPm. We
consider the evaluation function:

v

0

B

@

Pm −→ P

g = (g1, . . . , gm) 7→
m

X

i=1

figi

1

C

A

We havev(Fi) = fi and g =
Pm

i=1 giFi. An m-tuple g =
(g1, . . . , gm) is called asyzygyif v(g) = 0. The so calledprincipal
syzygiessi,j = fjFi−fiFj are syzygies. The set of all syzygies is
a module and abbreviated by Syz (for more information on syzygies
we refer to [2] or to [1]). Let PSyz be the module generated by
the principal syzygies. For a generic (random) polynomial system

(f1, . . . , fm), Syz= PSyz.
We can extend the admissible ordering< toPm with the following
definition:

m
X

k=i

gkFk ≺
m

X

k=j

hkFk iff

8

<

:

i > j andhj 6= 0
or
i = j and HT(gi) < HT(hi)

In particular we haveF1 � F2 � · · · � Fm. For all g ∈ Pm

there is an indexi such thatg =
Pm

k=i gkFk with gi 6= 0. This i
will be denoted as theindexof g, index(g). For the new ordering
≺ we have

HT(g) = HT(gi)Fi

We define the degree ofg =
Pm

i=1 giFi, deg(g) by
max {deg(gi) + deg(fi) for i ∈ {1, . . . , m}}

Let Ti be{tFi | t ∈ T} so that HT(g) ∈ Ti. T = ∪m
i=1Ti will

be the set of the index of all the polynomials in the idealI . Of
course ift ∈ T , W (t) = {g ∈ Pm | HT(v(g)) = t} can contain
more than one element so we have to choose one of them:

PROPOSITION 1.

Letw be

„

T −→ Pm

t 7→ min≺W (t)

«

If (t1, t2) ∈ T (I)2, then HT(w(t1)) 6= HT(w(t2)) if t1 6= t2.

COROLLARY 1. For all the polynomialsp in the ideal I we
definev1(p) to be HT(w(HT(p))). If p1 and p2 are two polyno-
mials ofI with distinct head terms (HT(p1) 6= HT(p2)) we have
v1(p1) 6= v1(p2).

In the following algorithmF5, v1(p) will be the “signature” of the
polynomial p: it is unique and does not depend on the order of
the computations. We need to store these data in the internalrep-
resentation of a polynomial. Mathematically the representation of
polynomials will beR = T × P . If r = (tFi, f) ∈ R we define:

poly(r) = f ∈ P
S(r) = tFi ∈ T

index(r) = i ∈ N
We will see that during the execution of the algorithm the property
S(r) = v1(poly(r)) is conserved. We say thatr ∈ R is admissible
if there existsg ∈ v−1(poly(r)) such that HT(g) = S(r). Let
0 6= λ ∈ K, v ∈ T , t = wFk ∈ T andr = (uFi, p) ∈ R we
defineλr = (uFi, λp), vt = (vw)Fk andvr = (uvFi, vp). We
do not define an addition. We also extend the definition of usual
operators toR:

for r ∈ R HT(r) = HT(poly(r)).
for r ∈ R HC(r) = HC(poly(r)).
for r ∈ R andG ⊂ P , NF(r,G) = (S(r),NF (poly(r), G)).

5. NEW CRITERION
DEFINITION 1. Let P be a finite subset ofR, andr ∈ R, and

t ∈ R. If
poly(r) =

Pk

p∈P
mpp mp ∈ P

we say that it is at-representationof r wrt P if HT(t) ≥ HT(mp)
andS(r) ≥ S(mpp) for all p ∈ P . This property will be denoted
as f = OP (t). We use the notationf = oP (t) if there exists
t′ ∈ R such thatS(t′) ≤ S(t) and HT(t′) < HT(t) such that
f = OP (t′).

DEFINITION 2. We say thatr ∈ R is normalizedif S(r) =
eFk ande is not top reducible byId(fk+1, . . . , fm).
We say that(u, r) ∈ T × R is normalized ifu r is normalized.
We say that a pair(ri, rj) ∈ R2 is normalizedif S(rj) ≺ S(ri),



(ui, ri) and(uj , rj) are normalized where
τi,j = lcm(HT(ri), HT(rj)), ui =

τi,j

HT(ri)
, uj =

τi,j

HT(rj)
.

THEOREM 1. Let F = [f1, . . . , fm] be a list of polynomials.
LetG = [r1, . . . , rnG

] ∈ RnG such that

(i) F ⊂ poly(G). Letgi = poly(ri) andG1 = [g1, . . . , gnG
].

(ii) all the ri are admissible (i = 1, . . . , nG).

(iii) for all (i, j) ∈ {1, . . . , nG}, such that the pair(ri, rj) is
normalized then spol(gi, gj) = oG1

(uiri) (or 0) whereui =
lcm(HT(gi),HT(gj))

HT(ri)
.

ThenG1 is a Gröbner basis ofI .

PROOF. Let f be an element ofI = Id(G1). We defineV =
{(s, σ) ∈ PnG × Sn |

PnG
i=1 sigσ(i)) = f andS(s1rσ(1)) ≥

S(s2rσ(2)) ≥ · · · }. We define a new ordering(s, σ) <1 (s′, σ′).
We use the notation̄v = (S(s1rσ(1)),S(s2rσ(2)), · · · ) and v̄′ =
(S(s′1rσ′(1)),S(s′2rσ′(2)), · · · ). We define(s, σ) <1 (s′, σ′) if
one of the following conditions is true

(i) v̄ ≺lex v̄′

(ii) v̄ = v̄′ andmaxiHT(sigσ(i)) < maxiHT(s′igσ′(i))

(iii) v̄ = v̄′ and t = maxiHT(sigσ(i)) = maxiHT(s′igσ′(i))
and#{i |HT(sigσ(i)) = t} < #{i |HT(s′igσ′(i)) = t}

We takes = min<1
V. Wlog we may assume thatσ is the identity

(by renumberingG) Let t = maxiHT(sigi) andI = {i |HT(sigi) =
t}, r = #I. Suppose for a contradiction thatt > HT(f). Nec-
essarilyr ≥ 2. Suppose that there existsi such that(si, ri) is
not normalized. That is to sayS(ri) = uFk and HT(si)u ∈
HT(Id(fk+1, . . . , fm)). Sinceri is admissible, one can writegi =
Pm

j=k wjfj such that HT(wk) = u.
siwk = r +

Pm

r∈G S(r)≺Fk
λjpoly(g)

with HT(r) < HT(siwk) and HT(λjpoly(g)) ≤ HT(uku). Then

f =
P

j 6=i sjgj + siwkgk +
Pm

j=k+1 siwjgj

=
X

j 6=i

sjgj + rgk +
m

X

r∈G S(r)≺Fk

gkλjpoly(g) +
m

X

j=k+1

siwjgj

This expression is<1 s and there is a contradiction. Therefore all
the(si, ri) are normalized.
Let w = max{S(siri) |, i ∈ I} andJ = {i ∈ I | S(siri) = w}.
If #J > 1, since theri are admissible then for alli ∈ J , ri =
Pm

j=j0
wi,jfj with HT(wi,j0)Fj0 = w. We can writef as follow:

f =
P

i<minI sigi + (
P

i∈J siwi,j0 )gj0

+(
P

i∈J

Pm

j=j0+1 wi,jgj +
P

i>maxI sigi)

so we find another expression off with is <1 thans. Consequently
#J = 1 and letk ∈ J andl ∈ I\{k}. By construction we have
S(slrl) ≺ S(skrk). We writef as follow:

f = skgk − HC(sk)
HC(sl)

slgl +
h

1 + HC(sk)
HC(sl)

i

slgl +
P

i6=k,l
sigi

Let mk = HM(sk) and ml = HC(sk)
HC(sl)

HM(sl) and s′i = si −

HM(si). Hencet = HT(mkgk) = HT(mlgl), and consequently
τk,l = lcm(HT(gk), HT(gl)) dividest, that is to say:

mkgk − mlgl = HC(sk)t
τk,l

spol(gk, gl)

Since(sk, gk) and(sl, gl) are normalized we deduce that(gk, gl)
is normalized, so that

mkgk − mlgl = t
τk,l

oG(ukrk)

= oG(skrk)
whereuk =

τk,l

HT(rk)

Hence
f = oG(skrk) + s′kgk − HC(sk)

HC(sl)
s′lgl + αslgl +

P

i6=k,l
sigi

wheres′i = si − HM(si) (HT(s′i) < HT(si)) and α = 1 +
HC(sk)
HC(sl)

∈ K. This is a new expression off which is<1 s. This is
a contradiction andt ≤ HT(f). So we can reducef by an element
of G1. f

∗
−→
G1

0.

REMARK 1. In the theorem if we restrict (iii) to the critical pair
of degree less thand we make the proof thatG is Gröbner basis up
to degreed.

6. SIMPLIFICATION RULES
We describe now how to implement the simplification rules (for
instancexF2 → f6 andF2 → f4 in the previous example).
We use an array Rule to store the rules. Each element of Rule isa
list of elements ofT × N. At the beginning there is no rules:

Reset simplification rules
Input : m the number of polynomials
for i := 1, 2, . . . , m do

Rule[i] := ∅

Add Rule (rk = (p, tFi) ∈ R)
Rule[i] := concat([[t, k]], Rule[i])

The following procedure try to simplify a productu × rk:

Rewritten (u ∈ T a term,rk = (p, tFi) ∈ R)
L := Rule[i] = [[t1, k1], . . . , [tr, kr]]
for i = 1, . . . , r do

if ut divisible byti then
return (ut

ti
, rki

)

return (u, rk)

The following function returntrue if the u × rk can be rewritten
differently.

Rewritten? (u ∈ T a term,rk = (p, tFi) ∈ R)
(v, rl) := Rewritten(u, rk)
return l 6= k

Example: Ifr4 = (F2, f4) andr6 = (xF2, f6) as in the previous
example thenAddRule(r4) andAddRule(r6) add two new rules
xF2 → f6 andF2 → f4. Now Rewritten(x y, r4) returns(y, r6)
and Rewritten?(y2, r4) returnstrue.

7. DESCRIPTION OF THE ALGORITHM
7.1 The main algorithm
Since the algorithm isincrementalthe main loop of the algorithm
iterates on the number of polynomials:

Algorithm incremental F5

Input :



F = (f1, . . . , fm) a list of homogeneous
polynomials and ¡an admissible ordering

N := m (the number of polynomialsr1, . . . , rN occurring in
the algorithm)

Reset simplification rules(m).



rm := (Fm, fm) ∈ R, Gm := [rm]
for i := (m − 1), . . . , 1 (in that order)do

Gi := AlgorithmF5(i, fi, Gi+1)
return poly(G) = [poly(r) | r ∈ G1]

In this algorithm the critical pairs are oriented:

DEFINITION 3. The critical pair of(r1, r2) ∈ R2 is

CritPair(r1, r2) = (lcmr1,r2
, u1, r1, u2, r2)

(this is an element ofT 2 × R × T × R) such that:
lcm(CritPair(r1, r2)) = lcmr1,r2

= u1HT(r1) = u2HT(r2)
= lcm(HT(r1), HT(r2))

and
S(u1r1) � S(u2r2)

We say that the degree of such a critical pair isdeg(lcmr1,r2
).

The basic version of our algorithm is now described. To simplify
the presentation, we make the choice to describe the algorithm sim-
ilarly to the description of the Buchberger algorithm, thatis to say
using polynomials and not linear algebra. However, from theeffi-
ciency point of view, it is recommended to translate the algorithm
in a F4 [6] fashion. The only structural difference with a standard
Buchberger algorithm is that the reduction of one polynomial wrt
a list of polynomials may return several polynomials. The algo-
rithm uses3 auxiliary functions: the definitions of “CritPair” (con-
struction of critical pair if the new criterion cannot apply), “Spol”
(construction of the Spolynomial), and “Reduction” (reduction of
polynomials wrt the current list) are postponed until the end of this
section:

Algorithm F5

Input :

8

>

>

<

>

>

:

i an integer andfi a polynomial
Gi+1 a finite subset of R,
such that poly(Gi+1) is a Gröbner basis

of Id(fi+1, . . . , fm)

ri := (Fi, fi) ∈ R
ϕi+1 = NF(., poly(Gi+1))
Gi := Gi+1 ∪ {ri}
P := Sort [CritPair(ri, r, i, ϕi+1) | r ∈ Gi+1]) by degree
while P 6= ∅ do

d := deg(first(P ))
Pd := {p ∈ P | deg(p) = d}
P := P\Pd

F := Spol(Pd)
Rd := Reduction(F, Gi, i, ϕi+1)
for r ∈ Rd do

P := P ∪ {CritPair(r, p, i, ϕi+1) | p ∈ Gi])
Gi := Gi ∪ {r}

P := SortP for the degree
return Gi

7.2 New criterion: implementation
We can now define the construction of a critical pair which imple-
ments the new criterion:

Algorithm CritPair (r1, r2, k, ϕ)

Input :

8

<

:

k an integer
r1, r2 polynomials inR
ϕ a normal Form

pi := poly(ri) for i = 1, 2
t := lcm(HT(p1), HT(p2))

ui :=
t

HT(pi)
for i = 1, 2

if u1S(r1) ≺ u2S(r2) then
return CritPair(r2, r1, k, ϕ)

tiFki
:= S(ri) for i = 1, 2

if k1 > k then return ∅
if ϕ(u1t1) 6= u1t1 then return ∅
if k2 = k andϕ(u2t2) 6= u2t2 then return ∅
return [t, u1, r1, u2, r2]

Algorithm Spol

Input :



P = [p1, . . . , ph] a list of critical pairs
ϕ a normal Form

Let pl = [tl, ul, ril
, vl, rjl

] for l = 1, . . . , h
F := ∅
for l from 1 to h do

if and
(not Rewritten?(ul, ril

))
(not Rewritten?(vl, rjl

))
then

N := N + 1
rN := (ulS(ril

), ul poly(ril
) − vl poly(rjl

))
Add Rule(rN)
F := F ∪ {rN}

F := SortF by increasingS
return F

7.3 Reductions of polynomials
A major difference with Buchberger algorithm is that the reduction
of a polynomial wrt a list of polynomials may return several poly-
nomials so we have to modify the standard Reduction function: we
use an auxiliary function TopReduction to perform an elementary
reduction step. The result of TopReduction is a pair(r, F ′) where
r ∈ R andF ′ a list of polynomials.F ′ = ∅ means thatr is irre-
ducible (or zero). IfF ′ 6= ∅ (thenr = ∅) and it means that we have
to rerun TopReduction on all the elements ofF ′.

Algorithm Reduction

Input :

8

>

>

<

>

>

:

ToDo a finite list of polynomials
G a list of polynomials ofR
k an integer
ϕ a normal Form

Done := ∅
while ToDo 6= ∅ do

h := the minimal ofToDo for S
ToDo := ToDo\{h}
(h1, T oDo1) := TopReduction(ϕ(h),G ∪ Done, k, ϕ)
Done := Done ∪ h1

ToDo := ToDo ∪ ToDo1

return Done

To implement TopReduction we need a function to test the divisi-
bility of the leading term of polynomial wrt a list of polynomials.
The result is a reductor or∅ if it is (top) irreducible.

Algorithm IsReducible

Input :

8

>

>

<

>

>

:

ri0 a polynomial ofR
G = [ri1 , . . . , gir ] wheregi ∈ R
k an integer
ϕ a normal Form

tjFkj
:= S(rij

) j = 0, 1, . . . , r
for j from 1 to r do



if all the following conditions are true

(a) u =
HT(ri0)

HT(rij
)

is a term (i.e.u ∈ T )

(b) ϕ(u tj) = u tj

(c) not Rewritten?(u, rij
)

(d) utjFkj
6= t0Fk0

then return rij

return ∅

It is easy to give an interpretation of the four conditions:
(a) the usual divisibility test.
(b) test the new criterion:(u, rij

) is normalized.
(c) test if we can use a previous computation to avoid

a waste of time (see the example in section 2).
(d) remove identical rows in the matrix.

Algorithm TopReduction

Input :

8

>

>

<

>

>

:

rk0
a polynomial ofR

G a list of polynomials ofR
k an integer
ϕ a normal Form

if poly(rk0
) = 0 then

Warning “the system is not a regular sequence”
return (∅, ∅)

r′ = IsReducible(rk0
, G, k, ϕ)

if r′ = ∅ then
return ( 1

HC(rk0
)
rk0

, ∅)

else
rk1

= r′

u =
HM(rk0

)

HM(rk1
)
∈ T

if uS(rk1
) ≺ S(rk0

) then
poly(rk0

) = poly(rk0
) − u poly(rk1

)
return (∅, {rk0

})
else

N := N + 1
rN = (uS(rk1

), u poly(rk1
) − poly(rk0

)) ∈ R
Add Rule (rN )
return (∅, {rN , rk0

})

7.4 Proof of the algorithm
Let R̃ be the set of all the polynomials occurring in the execution of
the algorithm. In the following we give a proof of the termination
in a restricted case (when there is no reduction to zero) but it is
possible to modify slightly theF5 algorithm so that we can always
ensure the termination of the algorithm in all the cases.

PROPOSITION 2. For all r ∈ R̃, r is admissible.

PROOF. By induction onm. Thenr1 = (F1, f1) is obviously
admissible. The operation to construct a newr ∈ R̃ is r′ =
(S(rk), poly(rk) − upoly(rl)) whereS(rk) > S(url) andrk, rl

admissible. Hence we can writeri =
Pm

j=1 si,jfj (i = k, l)
such that HT(si,1)F1 = S(ri). Hence poly(r′) =

Pm

j=1(sk,j −

usl,j)fj and HT(sk,1 − usl,1) = HT(sk,1). r′ is admissible.

PROPOSITION 3. If Gi+1 is a Gröbner basis of
Id(fi+1, . . . , fm), then all the polynomials occurring in Algorithm
F5(i, fi, gi+1) are normalized.

THEOREM 2. We suppose that all thefi are homogeneous and
that there is no reduction to zero. For alld, the result of Reduction
in the algorithmF5 isRd. ThenId(HT(Gi)) 6= Id(HT(Gi∪Rd)).

COROLLARY 2. This makes the proof of the termination of the
algorithmF5.

PROOF. Wlog we can suppose thani = 1 in the algorithmF5

andG2 the result of the algorithm on[f2, . . . , fm]. Let uF1 be
the maximum of{S(r) | r ∈ Rd}, so there existsr ∈ Rd such
thatS(r) = uF1. Suppose for a contradiction that there isr′ ∈

G1 ∪ Rd\{r} such thatu = HT(r)
HT(r′)

∈ T . If uS(r′) is not top
reducible byG2 then

a) if uS(r′) > S(r) then the critical pair
(r′, r) = (u, r′, 1, r) was introduced in the list and since
there is no reduction to zerour′ ∈ Rd. This is a contradic-
tion sincer was the maximum.

b) if uS(r′) < S(r) thenr′ can be reduced byr. Contradiction.

We have to study now the caseuS(r′) top reducible byG2. Since
r′ is admissibler′ =

Pm

i=1 s′ifi with HT(s′1)F1 = S(r′) and
us′1 = v +

Pm

i=2 mλifi with v < HT(us′1)

upoly(r′) = us′1f1 +
Pm

i=2 us′ifi

= vf1 +
Pm

i=2(λif1 + us′i)fi

Let T = {HT(tf1) > HT(r) | t ∈ T (v)}. If T is non empty
then for all t ∈ T , (t, f1) is normalized so that it should have
been put in the list of critical pair. In the reduction process we
find a polynomialr′′ such thatS(r′′) = v and HT(r′′) = HT(r).
Contradiction. IfT = ∅, HT(r) = HT(tfj) for somet ∈ T (v) so
we can reducedr by fj .

THEOREM 3. For all d, the result of the algorithmF5 is a (non
reduced) Gröbner basis up to degreed.

PROOF. The proof is by induction onm the number of polyno-
mials. We suppose thatG2 is a Gröbner basis up to degreed and
we want to proof thatG1 is a Gröbner basis up to degreed. For all
(r, r′) such as in theorem 1, letr′′ be the result of the reduction of
spol(r, r′) by G1. Let τ be lcm(HT(r), HT(r′)) andu be HT(r)

τ
.

We have
S(r′′) = uS(r)
and HT(poly(r′′)) ≤ lcm(HT(r), HT(r′)) < uHT(r)

so that

spol(r, r′) = r′′ + oG1
(ur) = oG∪r′′(ur)

From proposition 2 and proposition 3 we can apply theorem 1 and
we deduce thatG1 is a Gröbner basis of the ideal generated by
(f1, . . . , fm) (up to degreed).

THEOREM 4. If the algorithm finds a reduction to zero,rik
→

0 then there existss ∈ Syz\PSyz with HT(s) = S(rik
).

PROOF. We may suppose wlog thatS(rik
) = tF1 for some

t ∈ T . Now for all s ∈ PSyz with index(s) = 1 we have



s =
Pm

i=1

Pm

j=i+1 λi,jsi,j

=
Pm

i=1

Pm

j=i+1 λi,jfjFi −
Pm

i=1

Pm

j=i+1 λi,jfiFj

=
Pm

j=2 λi,jfjF1 +
Pm

i=2(· · · )Fi

Consequently HT(s) = HT(
Pm

j=2 λi,jfj)F1, that is to say HT(s) ∈
Id(f2, . . . , fm). Hence ifri,k = 0, thenS(rik

) = HT(s) for
somes ∈ Syz. Sincerik

is normalized HT(s) 6∈ Id(f2, . . . , fm),
hences 6∈ PSyz.

COROLLARY 3. If the input system is a regular sequence there
is no reduction to zero.

8. EXAMPLE
We compute one example from [10] in full. We are using the De-
gree Reverse Lexico orderingx > y > z > t and the coefficients
are rational numbers.

f3 = x2y − z2t
f2 = xz2 − y2t
f1 = yz3 − x2t2

The algorithm computes successively Gröbner bases of(f3), (f3, f2)
and(f3, f2, f1). Since the last computation is the most difficult we
may skip these first steps. The corresponding Gröbner basesare

G3 = [r3] andG2 = [r3, r2, r4, r5] wherer3 = (F3, f3), r2 =
(F2, f2), r4 = (x y F2, x y3 t − z4 t), r5 = (x y z2 F2, z

6 t −
y5 t2).

ϕ2 = NormalForm(., [r3, r2, r4, r5])
r1 = (F1, f1)
G1 = G2 ∪ {r1} = [r3, r2, r4, r5, r1]
There are four critical pairs:p7 = (x y z3, x, r1, y z, r2), p8 =
(x2 y z3, x2, r1, z

3, r3), p9 = (y z6 t, z3 t, r1, y, r5),
p10 = (x y3 z3 t, x y2 t, r1, z

3, r4). S(p7), . . . ,S(p10) are resp.
xF1, x

2 F1, z
3 F1, x y2 F1 are all invariants byϕ2.

P = [p7, p8, p9, p10]

d = 5 , enter Spol(P5) with P5 = [p7] andP = [p8, p9, p10]

r6 = (xF1, y
3 z t − x3 t2) andF := [r6]

We add a new rulexF1 → r6

There is obviously no reduction ofr6 by G1 so the returned result
is R5 = [r6]
G1 = [r3, r2, r4, r5, r1, r6]
We update the list of critical pairs:p11 = (y3 z3 t, z2, r6, y

2 t,
r1), p12 = (y3 z6 t, z5, r6, y

3, r5), p13 = (x y3 z t, x, r6, z t, r4),
p14 = (x2 y3 z t, x2, r6, y

2 z t, r3), p15 = (x y3 z2 t, x z, r6, y
3 t

, r2). We check thatS(z2 r6) = xz2 F1 andS(z5 r6) = x z5 F1

are reducible byϕ2 so that the pairsp11 andp12 are rejected. Hence
P = [p8, p9, p10, p13, p14, p15].

d = 6 , enter Spol(P6) with P6 = [p8, p13]
andP = [p9, p10, p14, p15]
We check that Rewritten(x2, r1) = (x, r6) so we do not keepp8

For the other pairp13: Rewritten?(x, r6) = false and
Rewritten?(z, r4) = false so thatr7 = (x2 F1, z

5 t − x4 t2)
We add a new rulex2 F1 → r7

There is obviously no reduction ofr7 by G1 so the returned result
is R6 = [r7]
G1 = [r3, r2, r4, r5, r1, r6, r7]
Among all the critical pairs we check as usual that(r7, r1), (r7, r6),
(r7, r3) and(r7, r4) are not valid.
The new critical pairs arep16 = (z6 t, z, r7, 1, r5) and p17 =
(x z5 t, x, r7, z

3 t, r2).
d = 7 , enter Spol(P7) with

P7 = [p15, p16, p17, p14] andP = [p9, p10]

We check that Rewritten(x z, r6) = (z, r7) so we do not keepp15

p16 is valid andr8 = (x2 z F1, y
5 t2 − x4 z t2) is computed

We add a new rulex2 z F1 → r8

p17 is valid andr9 = (x3 F1,−x5 t2 + y2 z3 t2) is computed
We add a new rulex3 F1 → r9

We check that Rewritten(x2, r6) = (1, r9) so we do not keepp14

There are two Spolys to reduceF = [r8, r9]
The elements ofF are not top reducible byG1 as described in the
algorithm but it is possible tofully reducer9 by y t2 × r1: r9 =
(x3 F1,−x5 t2 + x2 y t4) and the final result isr9 = −ϕ2(r9) =
(x3 F1, x

5 t2 − z2 t5)
The result of Reduction isR7 = [r9, r8]
G1 = [r3, r2, r4, r5, r1, r6, r7, r8, r9]
The critical pairs(r9, r1), (r9, r6), (r9, r7), (r9, r2), (r9, r3), (r9, r4),
(r9, r5), (r8, r1), (r8, r6), (r8, r7), (r8, r9), (r8, r2) and(r8, r5)
are not valid.
The new critical pairs arep18 = (x y5 t2, x, r8, y

2 t, r4) andp19 =
(x2 y5 t2, x2, r8, y

4 t2, r3).

d = 8 , enter Spol(P8) with
P8 = [p9, p10, p18] andP = [p19]
p9 is valid andr10 = (z3 tF1, y

6 t2 − x2 z3 t3) is computed
We add a new rulez3 tF1 → r10

We check that Rewritten(x y2 t, r1) = (y2 t, r6) so we do not keep
p10

We check that Rewritten(x, r8) = (z, r9) so we do not keepp18

Now r10 = ϕ2(r10) = (z3 tF1, y
6 t2−x y2 z t4) is fully reduced,

the result isR8 = [r10].
G1 = [r3, r2, r4, r5, r1, r6, r7, r8, r9, r10]
All the new possible critical pairs(r10, ri) (i = 1, . . . , 8) are re-
jected
d = 9 , enter Spol(P9) with P9 = [p19] andP = ∅

We check that Rewritten(x2, r8) = (x z, r9) so we do not keepp19

F = ∅ andR9 = ∅
The algorithm stops and returnsG1.
Remark that no useless pair has remained. With the Buchberger
algorithm (resp. the algorithm [10]) there was7 (resp. 1) useless
pairs and5 (resp.5) useful ones.

9. EXPERIMENTAL RESULTS
9.1 Number of useless pairs
This is interesting to compare the number of useless critical pairs
in practice for the various algorithms because this number does not
depend on the implementation (at least for theF5 algorithm). The
first line of the following tabular (figure 9.1) contains all the ex-
amples of [7] and [10] the other are well known. Note that reduc-
tions to zero are unavoidable forTrinks7 (7 equations, 6 vari-
ables). The table brought theEco n to our attention since the
number of useless pairs is not zero: we found that the system can
be straightforwardly rewritten by factorizing the original equations.
By reformulating these problem we obtain an equivalent system
Eco n fact with no reduction to zero ! The conclusion is that
for a lot of practical examples there is no reduction to zero.

9.2 First implementation
A first implementation of theF5 has been made in the Maple com-
puter algebra system and then translated in Gb (C++) and FGb (C).
From a traditional implementation of the Buchberger algorithm it
is very easy to implement the new algorithm: the only data type
to modify is to add to the property list of each polynomialr an
integer (the indexk of r) and a power productt (S(r) = rFk).
Hence the extra memory cost is very small. The behavior of the
algorithm is very good: it is at least one order of magnitude faster



Example [5] [7] [10] F5 remark
Raksanyi 1 ? 0 0
Hairer1 10 ? 4 0
Rose 22 19 ? 0

Trinks6 17 8 6 0
Trinks7 12 11 6 4 over constrained
Katsura3 1 ? 1 0
Katsura4 18 10 7 0
Katsura5 50 28 ? 0
Katsura10 3936 ? ? 0
Binary10 2147 ? ? 0
Noon8 7886 ? ? 0
Eco 6 61 ? ? 7 see text

Eco 6 fact 63 ? ? 0
Eco 8 fact 315 ? ? 0

Fig 9.1: Number of useless critical pairs

Cyclic 7 8 9 10
F4 1.26 36.0 4949.1

F4 inc 1.4 171.3
F5 1.0 27.9
F ′

5 0.4 7.2 1002.3 57600
F ′′

5 0.8 3.95 676.2
Fig 9.2: Comparison ofF4 andF5 for the Cyclicn problem

modulop (Inspiron PIII 1Ghz): CPU Time in seconds.

than the fastest known algorithm/implementation (F4) and two or-
der of magnitude faster than one of the fastest programs (Singular
2.0 [8]). In tabular 9.2 we give the timings for the well known
cyclic n problem: a Gröbner basis of Cyclic 10 was computed for
the first time.
In table 9.2 “F4 inc” is the F4 algorithm applied incrementally.
“F ′

5” and “F ′′
5 ” are different version of theF5 algorithm that will

be described in a future paper. We report now detailed CPU timings
for the Katsuran problem modulo a small primep (there is no
useless pairs for this example).

The algorithmF5 is not always faster thanF4: for cyclic n the ba-
sic version of theF5 algorithm is just a little faster thanF4; the
maximal efficiency of theF5 algorithm is expected when the num-
ber of equation is less or equal than the number of variables.On the
contrary bad performance is expected when the system is overcon-
strained: for instance compute a Gröbner basis for a total degree
and then rerun theF5 algorithm on the result.

In the following tables 9.2 we compute the speedup: for instance
O Sing/Gb is the CPU time for the old version of Singular (1-2-
3) divided by the CPU of Gb on the same example.
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n Singular Gb F4 F5 Singular
2-0-0 1-2-3

7 1.6 2.2 0.4 0.15 3.1
8 13.6 22.25 2.8 0.8 36.4
9 135.3 252.5 23.1 4.1 411.2
10 1140.2 2907.1 220.2 25.5 4311.8
11 11671 34903 2097 174.2 58174.6
12 25161 1460.7
13 240667 10748
Fig 9.2: Katsura n PII 400 Mhz (CPU time in seconds)

n F4/F5 Sing/Gb Gb/F4 O Sing/Gb Sing/F5

7 2.7 0.7 5.2 1.4 10.6
8 3.3 0.6 8.0 1.6 16.4
9 5.6 0.5 10.9 1.6 33.1
10 8.6 0.4 13.2 1.5 44.8
11 12.0 0.3 16.6 1.7 67.0
12 17.2
13 22.4

Fig 9.2: Katsura n PII 400 Mhz (Speedup)
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