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HFE Problem

@ Matsumoto, T., Imai, H.
“Public quadratic polynomial-tuples for efficient signature-verification and

message-encryption”.
EUROCRYPT ’'88.

@ J. Patarin.
“Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families

of Asymmetric Algorithms”.
EUROCRYPT '96.

Secrets:
e two n x ninvertible matrices S and T with coefficients in F»

e sparse univariate polynomial of degree D

H(X) = ) csX®
seS

where ¢; € Fan ‘ '
andS ={2'|[0</jandi<Dju{2'+2 |[0<i<jandi+ )< D}
Particular case: S = {2/ + 2/} then H(X) is a monomial.



Finite Field Extension

The field IF,» where p prime and n > 1 may be explicitly constructed in
the following way. One first chooses an irreducible polynomial P in
Fp| X] of degree n (such an irreducible polynomial always exists). Then
the quotient ring Iy = IF,[ X]/(P) of the polynomial ring IF,[ X by the
ideal generated by P is a field of order p".

In our case: p = 2, P is of degree n any x € F2» can be written
") x;w' where x; € F, (where w is the class of X in Fy[X]/(P)).

Example
Fy = Fo[X]/(X? + X + 1). J




HFE Problem: Public Key
We define the polynomial ring R = [F2[ X1, ..., X,| and we substitute X
by 37" X;«' into the HFE polynomial H(X):

n—1 n—1
HOY L Xiwh) = >0 Hi(Xh,. ., Xn) o
i=0 i=0

where each H; € R is a polynomial of degree 2.
The next step is to mix the variables:

()7 ()

and the equations:

(Py,...,Pn) € R"is the Public Key.



HFE Problem: Public Key

and the equations:

In other words, we compose S, Hand T:

S(H(T(X))) = (P1(X1,...,Xn), -, Pn(X1,...,Xn))



HFE Encrypt/Verify

Assume that M = (My, ..., M,) € '] is then message. Then
(01 ) (P1(M17~~-,Mn))
Cn Pn(M1,...,Mn)

This operation is very fast since it is just the evaluation of quadratic
polynomials.

is the ciphertext.

This operation can be done with linear algebra. Why ?




HFE Decrypt/Sign
Deerypr

Assume that C = (Cy4, ..., Cp) € IF] is then ciphertext.
To decrypt the ciphertext C, we first find all solutions Z to the
univariate equation

H(z)=s""c,

next we compute 7' Z to recover the original message.

Hence we have to solve a degree D univariate equation.

Find the roots of a polynomial of degree F with coefficients in Fo» can
be done (see [5] for instance) in O(M(d) log(d)) operations in Fan
where M(d) is the cost of polynomial multiplication.

In practice, we cannot take arbitrarily big value for the degree of the
univariate polynomial (say d < 1024).

For instance: n = 80, d = 96 for the first HFE Challenge. I




Algebraic Attack

The direct attack is obvious: given (M, ..., M,) we have to solve the
following polynomials system:

{ Pi(X1,...,Xn) = My

Pn(X‘],...,Xn) - Mn



Algebraic Attack

(My, ..., Mp) is given.
More precisely since the solutions are to be found in F, we have to
solve the following system:

P1(X1,...,Xn) = M,

Pn(X1,...,Xn) :Mn

) X2 — xq

X2 — Xp

What is the complexity of solving the algebraic system?
What is the complexity of computing the Grébner basis.




Simple Estimation of the Complexity

From a complexity point of view the two important parameters are: d
the maximal degree occurring in the computation and the size Ny of
the Macaulay matrix in degree d.

Then the whole complexity is simply Ny where 2 < w < 3 is the cost of
linear algebra.

Since we add the field equations x,? — X; it means that all the
monomials are squarefree, so that

%= (a)

Hence, the main goal is to estimate d.
We begin by running some experiments.



Experimental Complexity

D 16 | 17 | 33 | 96 | 128 | 129 | 257 | 384 | 512 | 513

Maxdegree | 3 | 4 | 4 | 4 4 5 5 5 5 6

Relation between D and the maximal degree.

Maximal Degree
6 |

/.

21 ——HFE 129 | ]
—— HFE 96
HFE 17
0 ! ! ! ! !

2 4 6 8 10 12 14 16 18 20 22 24N



Experimental Complexity

n 14 15 16 17 23 24 25
degree 4 4 5 5 5 6 6
nb of rows | 1695 | 1379 | 8840 | 11424 | 40480 | 223124 | 278875

Maximal degree occurring in Grobner for random systems.



Experimental Complexity
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Matrix representation of polynomials

Definition
If F = [fi,...,fn] is @ vector of m polynomials and < an admissible
ordering, T_(F) = [, ..., 1] the monomials in the support of F sorted

for <. The matrix representation of Mr_(r)(F) wrt F is:
h b B

M(F) =

M(F)t = coeff (f;, )

Moreover, M(F) satisfies the following equation:

F=M(F)-T(F)



Polynomial representation of a matrix

Definition

If M is a matrix of size / x m with coefficients in K and X = [f,..., {n]
is a vector of terms, then the polynomial representation of M wrt X is
the vector of / polynomials given by:

F=M-X



Example ( Cyclic 4 Problem)
The monomial ordering is DRL

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fh=a+b+c+d

The matrix representation of Fy = [f3, bfy, dfs] is:

ab b2 bc ad bd cd d?
0 0 0 1 1 1 1
1 0 1 1 0 1 0
1 1 1 0 1 0 0

dfy
fa
bfy

A =M(F) =




Example ( Cyclic 4 Problem)
The monomial ordering is DRL

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

The matrix representation of Fy = [f3, bfy, dfs] is:

ab b> bc ad bd cd d?
dfy 1 1 1 1
fa

bfy

2 = S ) = 1 1 1 1

1 1 1 1




Macaulay matrix

Definition (Macaulay matrix [?])

Let F = [fy,...,fn] a vector of m polynomials and d a non negative
acaulay

integer then the Macaulay matrix in degree d of F M~ (F), is the
matrix representation of

FO=[t-fil1<i<m and tie T with deg(f;) < d — deg(f)]

my Mme M3
t f

acaulay _ (d)y _
M (F) = M(F@) = 1 ¢



Echelon form of a matrix

The basis operation is to compute a row echelon form of matrix; this
will be the most costly operation.

Definition

If M(F) is the matrix representation of a vector of polynomials F we

———

denote by M(F) the Gaussian elimination of M(F) (without pivoting the
columns of the matrix).

We extend this definition to polynomials:
Definition
Let F — K[xy,...,xn] and < a monomial ordering. We denote by F the

polynomial representation of I\’/ITFJ) We say that F is the echelon form
of F (or a Gaussiant elimination) wrt <.









Example
The polynomial representation of:

ab b° bc ad bd cd d?
1 1 1 1

1 1 —1 —1
1 2 1

i fs = ad + bd + cd + d?,
F = f6=ab+bc—bd—d2,
f, = b?+2bd + d?




Macaulay method

The idea of using linear algebra to solve polynomial systems date back
to Macaulay.

Macaulay matrix is a generalization of the Sylvester matrix [?] ( the
matrix involved in the computation of the resultant of 2 polynomials).

The link between the computation of a truncated d-Grébner basis is
given by the following theorem of Lazard:

IfF ={fi,... I} is a set of homogeneous polynomials then
MM (F) is a (non reducible) d-Grébner basis of F.
IfF={fi,.... fn} is a set of polynomials, then there exists d > 0 such

—_——

that M (F) is a Grébner basis of F.




Macaulay bound

Let F = {fy,...,fm} Is a set of homogeneous polynomials which is a
regular sequence. We define

m
= Z deg(f;

then Ms™'™ (F) is a (non reduced) Grébner basis of F.




Regular sequence I

We consider the Macaulay matrix of F = [fy,..., ]

If the Macaulay matrix is singular «— the rows of the matrix are not
independent.

Moreover, each row of the matrix is a product t x f where f is a term
and f € F; the linear dependence can be expressed by

ter et Arf =0 or equivalently by grouping terms:

m
Yaifi=0 (1)
i=1

where g; are polynomials in K|[xy, ..., x,|. We say that (g1,...,9m) isa
syzygy. The relation (5) can be rewritten:

g1f; = 0 modulo Id(ng R fm) (2)

in other words it is a zero divisor (if g # 0).



Regular sequence I1

A linear system is non singular if one cannot find a non zero linear
combination:

m
D INifi=0with \; e K (3)
i=1

For algebraic systems: it is not possible to avoid non zero relations (5) :

fifi—ff=0 (4)

We say that it is a trivial syzygy.



Regular sequence I

We consider the Macaulay matrix of F = [fy,..., ]

If the Macaulay matrix is singular <— Ithe rows of the matrix are not
independent.

Moreover, each row of the matrix is a product t x f where f is a term
and f € F; the linear dependence can be expressed by

ter et Arf =0 or equivalently by grouping terms:

m
Yaifi=0 (5)
i=1

where g; are polynomials in K|[xy, ..., x,|. We say that (g1,...,9m) isa
syzygy. The relation (5) can be rewritten:

J1 fy = 0 modulo Id(ng ey fm) (6)

in other words it is a zero divisor (if g # 0).



Regular sequence I1

A linear system is non singular if one cannot find a non zero linear
combination:

m
D INifi=0with \; e K (7)
i=1

For algebraic systems: it is not possible to avoid non zero relations (5) :

i~ £ =0 ®)

We say that it is a trivial syzygy.



Regular sequence 111

Definition (Regular Sequence

Algebraic definition: the system (fi, ..., f;) of homogeneous polynomi-
alsis regularif forall i = 1,..., mand g such that

glffe<f17"'7fi*1>

then gisalsoin (f,... . fi ).

Geometric definition: the system(fq, ..., f,) of homogeneous polyno-
mials is regular if for all / € {1,..., m}, the dimension of {f;,...,fj)is
n—i.

We say that the sequence (fi, ..., fy) is regular.

The sequence (fi,...,f,) of affine polynomials is regular if the se-
quence (f/',... f1) is regular ( 7 is the highest homogeneous par of
f;).



Regular sequence IV

Remark
Another characterization of regular sequences: there is no relation

Zg,~1‘,-:Owithg,eK[x1,...,xn]
i

except the relations induced by the trivial syzygies f;f; = fif..

Remark

From the geometric definition: there is no regular sequence when m >
n.



Link betwen Critical Pairs and Linear Algebra
Characterizations of Grobner Bases



Characterizations of Grobner Bases

Useful characterizations of Grobner bases.
Definition (i-representation)

Let P = [py,...,px] be a finite subset of K[x1,...,x5], 0 # f €
K[x1,...,xn], and t € T. Assume that there exists (g,...,9x) €
K[x1,...,Xn] such that:

K
f=>9ip;
i—

We say that it is a {—representation of f wrt P if t > LT(g;p;) for all
1 </ < k. We denote by f = Op(t) this property.

We note f = op(t) when there exists ' € T such that ' < tand f =
Op(t).



Characterizations of Grobner Bases

Iff, g are polynomials and , t is a term, P a finite subset of
polynomials, then

= Op(t) g= Op(t) implies f+ g= Op(t)
f=op(t) g=op(t) implies f+g=op(t)
f=0Op(t) ueT implies u f=Op(ut)
f = op(t) ueT  implies uf=op(ut)

If REDUCTION(p, P) = 0 orp P—*> 0 then p = Op(LT(p)).

Easy exercise.




Characterizations of Grobner Bases

When f = Og(LT(f)) we say that f has a standard representation wrt
G.

G is a Grdbner basis if and only if Y0 +# f € 1d(G), f = Og(LT(f)).

Exercice. O I

and what happen when

f # Og(LT(f)) ?



Cancellation
fel=1d(f, -, fn)
By definition:

f=gifi + -+ gmfm



Cancellation

fel=1d(f;, - ,fn)

By definition:
f=gifi + -+ gmfm

Not a unique representation !

g1 hi
+go o
+g3 1
+gafy
+g5f5



Cancellation

fel=1d(f;, - ,fn)

By definition:
f=gifi + -+ gmfm

Not a unique representation !

g1 hi
+go o
+g3 1
+gafy
+g5f5




Cancellation

fel=1d(f,, -, fn)
By definition:

f=gifi + -+ gmfm

Not a unique representation !

G
1o\




Characterizations of Grobner Bases

G is a Grobner basis if and only if V0 +# f € 1d(G), f = Og(LT(f)).

Let G be a finite subset of polynomials. If for all g1, g- in G, we have
Spol(g1,92) = 0 or Spol(gy, g2) = 0g(lem(g1, 92)), then G is a Grébner
basis.

We need to proof a lemma first .. .




Proof of the theorem: lemma

Letfi,..., fx be nonzero polynomials in K[xq,..., x| andte T.
Consider f = Op(t) = Zf-‘:1 cix“if;, where c; € K* such that

t =X LT(fy) = - = X% LT(f,).

IfLT(f) < t, then k > 1 and f can be rewritten:

k—1
f o= Y bt Spol(f fur) with by € K. ©)
=1 T

where 7; = lcm(f;, fi1). Furthermore

I T(Spol(f, fuq)) < t, foralli=1,... k—1.
Tj




Characterizations of Grobner Bases

Let G be a finite subset of polynomials . G is a Grébner basis if and
only if Spol(f,g) — 0 for all (f,g) € G?.

Let G be a finite subset of polynomials . G is a Grébner basis if and
only if REDUCTION(Spol(f,g), G) = 0 for all (f,g) € G>.

Let (f,g) € G2, f # g. Put t = LT(Spol(f, g)) < lem(f, 9)

If REDUCTION(Spol(f, g), G) = 0 then from proposition (R) :

Spol(f, g) = Og(LT(Spol(f,g))) = Og(t) = og(lem(f, g))and we can
apply the theorem. O




Buchberger Algorithm
Very simple version of the Buchberger algorithm:

F =[fi,...,fs] alist of polynomials
< admissible ordering
Output: G a finite subset of K[x1, ..., xa].
G:=Fandm:=s
P = {(f,fj) | 1 <i<j< mj} the list of critical pairs
while P # ¢5 do
Select and remove from P a critical pair (f, g)
fm+1 = SpOI(fa g)
fm+1 :=REDUCTION(fpy1, G)
if 7,1 # 0 then

Input:

m:=m+1
P:=Pu{(fifn) | 1<i<mj}
G:= Gu {fn}

return G







The F4 algorithm
Definition

A critical pairs of (f,,f) is a member of T2 x K[xy,...,xy] x T x
K[x1,...,Xn]s
Pair(f;, f;) := (lemy, t;, f;, 4, ;)

such that

lem(Pair(f;, f;)) = lemy = LT(t;f;) = LT(t;f;) = lem(f;, f;)

Definition
We define the degree of the critical pair p;; = Pair(f;, f;), deg(p; ), to be
deg(/lcm; ;). We define the following operators:

Left(p;) :=t - f; et Right(p;;) := t; - f;



Selis a function List(Pairs) — List(Pairs)
such that Sel(l) # g if | # &
Output: un sous ensemble fini de K|[x1, ..., xa].
G:=F,Ff :=F,d:=0 and P := {Pair(f,g) | (f,g) € G® with f = g}
while P # ¢j do

F is a finite subset of K[xq,..., x,]
Input:

d=d+1
Py := Sel(P)
P:= P\Py

Ly := Left(Pd) V) Right(Pd)
F; :=REDUCTION(Ly4, G)
for he Fj do
P := Py {Pair(h,g) | g € G}
G:=Gu{h
return G




We can now extend the definition of reduction of a polynomial modulo
a subset ofK|[xq, ..., x,], to the reduction of a subset of K|[x1,..., x|
modulo another subset of K[x1, ..., xa]:

Input: L, G finite subsets of K[xq, ..., x|
Output: a finite subset of K[x1. ..., x| (could be empty).
F :=SYMBOLICPREPROCESSING(L, G)

F = Gaussian reduction of F wrt <
F+ .= {f e E|LT(f) ¢ LT(F)} /I the “useful” part of F
return F+




No arithmetic operation is used: it is a symbolic preprocessing.

Input: L, G finite subsets of K[x1, ..., x|
Output: a finite subset of K|[x1, ..., xx]
F:=L
Done := LT(F)
while T(F) # Done do
choose m an element of T(F)\Done
Done := Done u {m}
if m top réductible modulo G then
exists g€ Gand m’ € T such that m = m’ - LT(9)
F:=Fou{m. g}
return

The SYMBOLICPREPROCESSING function is very efficient: its
complexity is proportional to the size of the output (if #G is smaller
than the final size of T(F)) [parallel implementation].



For all polynomials p € Ly,we have p E'o

The F, algorithm computes a Grébner basis of G inK[xq, ..., xa]
such that F < G and Id(G) = Id(F).

Remark

If #Sel(/) = 1 for all | # & then the F, algorithm reduces to the Buch-
berger algorithm. In this case the function Sel is the equivalent of the
selection strategy for the Buchberger algorithm.



Selection function

Input: P a list of critical pairs
Output: a list of critical pairs.

d := min {deg(lcm(p)) | p € P}
Py :={pe P | deg(lem(p)) = d}
return Py

We call this strategy the normal strategy for F,.

Hence, if the input polynomials are homogeneous, we obtain in degree
d, a d Grébner basis; Sel selects, in the next step, all the critical pairs
which are needed to compute the Groébner basis in degree d + 1.



Optimisations

e including Buchberger Criteria (or F5 criterion).
e reuse all the rows in the reduced matrices.

(GneWa Pnew) 3:UPDATE(Golda Poia, h)

a finite subset G,y of K[x1, ..., x|

Input: < a finite subset P, of critical pairs in K[xq, ..., x|
0+ heK[xq,...,Xn]

Output: a finite subset in K[xq, ..., x,| an updated

list of critical pairs.




Inout: F cK[x1,...,Xn]
PUE Y sel a function List(Pairs) — List(Pairs)

Output: a finite subset of K|[x1, ..., x,].
G:=gandP:=gandd:=0
while F # 5 do

f:=first(F); F := F\{f}

(G, P) :=UPDATE(G, P, f)

while P # 5 do

d:=d-+1

Py := Sel(P); P := P\Pq4

[Lg o= Left(Pd) U Right(Pd)

(Fg,Fq) :=REDUCTION(Ly, G, (Fj)g1.... (d—1))

for he FN:; do
P:= Py {Pair(h,g) | g € G}
(G, P) :=UPDATE(G, P, h)

return G




F4: step by step

Example (3 quadratic equation in F4q1)
Monomial ordering is DRL and the normal strategy

[ fi = x1° + 66 X1 X2 + 4 X1 X3 + 25 X02 + 41 Xp X3 + 54 X3° + 42 xq
+87 x> + 22 x5 + 86,
fr = X12 + 22 X1 Xo + 38 X1 X3 + 9 X0% + 53 Xo X3 + 6 X532 + 92 xq
+61 X0 + 74 x3 + 49,
fs = x12 + 13 X1 Xo + 86 X1 X3 + 29 X22 + 11 X» X3 + 81 x3° + 98 xq
+67 Xo + 7 x3 + 40

At the beginning G = {fi} and Py = {Pair(f, f3), Pair(f;, f>)} such that
L ={(1,k),(1,%),(1, )}
SYMBOLICPREPROCESSING(L+, G, &):

Fi={f,h, fi} T(F1)={{X2| x1X0, X1 X3, X3, X2X3, X5, X1, X2, X3, 1}

xZ | is already done. All the other monomials are not reducible.




F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f{, f-)} such that
L2 = {(1 ) f3)7 (17 f2)7 (17 f1)}

SYMBOLICPREPROCESSING(Ly, G, J):

Fo={fs,b,fi} T(F2)={x?| xiXo, X1 X3, X3, XoX3, X5, X1, X2, X3, 1}

xZ |is already done. All the other monomials are not reducible.
Matrix representation of F = [f3, f>, f1] is:

X2 XiXo X5 XiXz XoXz X5
fz | 1 13 29 86 11 81
fo | 1 22 26 38 58 6
fi | 1 66 25 4 41 54

A= M(F) =



F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, )} such that
L ={(1,5%),(1,%),(1,f)}.
SYMBOLICPREPROCESSING(Ly, G, F):
Fo={fs,fo,fi} T(F2) = {|x2| X1 X2, X1X3, X3, XoX3, X2, X1, X2, X3, 1}

x¢ |is already done. All the other monomials are not reducible.

X2 XiXo X5 XiX3 XoX3 X2
| O 0 1 28 19 79
fs| 0 1 0 12 2 5
f1 | 1 66 4 25 41 54

Ay =



F4: step by step

Example (3 quadratic equation in F1q1)

At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, f>)} such that

L2 = {(1 s f3)7 (1a f2), (1 3 f1)}
SYMBOLICPREPROCESSING(Ly, G, F):

Fo={f, b, fi} T(F2)={X2| xiX0, X1 X3, X3, X2X3, X5, X1, X2, X3, 1}

>
X

X2 XiXo X5 XiX3 XoXg X2

A fs| O 0 1 28 19 79
2~ /0 1 0 12 2 5
fi | 1 66 4 25 41 54

Polynomial representation of Az

is already done. All the other monomials are not reducible.



F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, f»)} such that

L = {(17f3)7 (17 f2)a (17f1)}

SYMBOLICPREPROCESSING(Ly, G, F):

Fo={f5,o,fi} T(F)={x2

X2 XiXo

~ K]0 0
Az = 510 1
fi | 1 66

2 2
, X1X2, X1 X3, X5, XoX3, X5, X1, X2, X3, 1}

xZ |is already done. All the other monomials are not reducible.

X5 XiX3 XoXz X5
1 28 19 79
0 12 2 5
4 25 41 54

Polynomial representation of Az

fs = X1 Xo + 12 X1 X3 + 2 X0 X3 +55X32 + 66 X1 + 88 xo + 60 x3 + 92,
fo = Xx0° + 28 X1 X3 + 19X X3 + 79 x3° + 30 x4 + 50 X5 + 59 x3 + 46



F4: step by step

Example (3 quadratic equation in F1q1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f3)} such that
Ly ={(x, f1), (x1,85), (X, f5), (X1, T5) }

SYMBOLICPREPROCESSING(L3, G, &):
Fz = {xofi, X115, Xof5, X1 f}

T(F3) = {| x2x2 |,| X1 x2

2
L X3, X1 XoX3, X1 X2, X1 X3, . ..}




F4: step by step

Example (3 quadratic equation in F1q1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f5)} such that
Ly ={(x, f1), (x1,85), (X2, f5), (X1, T5) }

SYMBOLICPREPROCESSING(L3, G, J):
F3 = {xofi, X115, Xof5, X1 f }

T(F3) = {| x2x2 |,| X1 X2

3 2
, X5, X1X2X3, X1X5, X1 X3, - . .}

Xg is divisible by nga — 3 =FuU {ngg}
X1 XoX3 is divisible by x3fs — F3 = F3 U {x3f5}



F4: step by step

Example (3 quadratic equation in F1g1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f5) } such that
Ly = {(x2, f1), (x1,%5), (X2, f5), (X4, fg) }.

SYMBOLICPREPROCESSING(L3, G, &):
Fs = {xofy, X115, Xof5, X1 16}

2 2| .3 2
T(F3) = {{ X7 X2 |,| X1X5 |, X5, X1 X2X3, X1 X5, X1 X3, . . .}

x3 is divisible by xofy — F3 = F3 U {xofs}
X1X2X3 is divisible by X3f5 — F3 = F3 U {X3f5}

Fz3 = [x2fy, X115, Xo f5, X1 T, X2 fs, X3 f5, X3 T, f5, f, X3 fi, i ]



F4: step by step

Example (3 quadratic equation in F1q4)

Xg is divisible by Xofg —> F3 = F3 U {nge}
X1X2X3 is divisible by X3f5 — F3 = F3 U {X3f5}

F3 =
fs
fs

As=.

Xofs
fio

Xofy
fg

[Xo fy, X1 5, Xo 5, X1 fg, Xo f5, X3 f5, X3 T, 5, fg, X3 1y, ]

1
1 0
1 0

1 66 25

i 0 O

~
O OOk

55

19
2
41
79
55
0
54
0

o o W
foBBoocococo -~

30
66
50
42
88

®© o ® 01 o
cP¥oPTococoPRo-~

28
12

60

50
88
87
0
0
0
46
92
0
86
0

fio = X1 X32 + 23 x3° + 77 X1 X3 + 66 X2 X3 + 84 X532 + 48 X1 + 38 Xo + 44 x3 + 68
fo = X2 Xa2 + 98 x3% + 60 X1 X3 + 34 X2 X3 + 85x3° + 65 X1 + 9xo + 74 X3 + 28



F4: step by step

Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abed — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L =
{(1 ’ f3)7 (ba f4)}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| f=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3,fs)} such that L =
{(1af3)7(b7 f4)}

SYMBOLICPREPROCESSING(L+, G, ):
Fi = {k,bfy} T(F) = {labl,ad, b?, bc, bd, cd}

is already done.



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fr=a+b+c+d

At the beginning G = {fy} and Py = ({Pair(f3,fy)} such that L; =
{(1 ) f3)7 (ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy} T(F)={abl|ad] b?, bc,bd, cd}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3, fz)} such that Ly =
{(1 ) f3)7 (b7 f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {fk,bfy} T(F)={abl|ad] b? bc,bd, cd}

ad is top reducible by f, € G !



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fr=a+b+c+d

At the beginning G = {fy} and Py = ({Pair(f3,fy)} such that L; =
{(1 ) f3)7 (ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy,diy} T(F;) = {ab],|ad], b2, bc, bd, cd, a?}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(b5 f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy,df} T(F) = {{abl.[ad]|b?] be, bd, cd, d?}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3,fs)} such that L =
{(1,5), (b, fa)}.

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f.bhdfs} T(F) = {{abl[ad][6?] bc,bd, cd, o?}

b? is not reducible by G



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):
Fy = {f5,bfy,dfy} T(Fy) = {abl|ad

Ira Fa)

bc

bd

cd

) b )




Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abed — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fr=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(b7 f4)}

SYMBOLICPREPROCESSING (Ly, G, ¢J ) returns

Fi = [f3, bfy, dfy].















For the next step we have to consider P, = {Pair(fo, f4)}
hence L, = {(1,f), (bc, fs)} and F = {F;}.




Example (Cyclic 4)

L2 = {(1 ) f2)7 (bC7 f4>} et f = {F1}
In SYMBOLICPREPROCESSING we can try to simplify the products 1 - f>
and bc - f, using the previous computations:

For instance LT(bc f;) = abc = LT(c fz) and so instead of bc - f, we can
consider ¢ - fs.



Example (Cyclic 4)
For the next step we have to consider P, = {Pair(f, )}
hence L, = {(1,f), (bc, fs)} and F = {F}.
SYMBOLICPREPROCESSING

Fo = {h,cf} T(F2) = { abc] bc?, abd, acd, bcd, cd?}



Example (Cyclic 4)
For the next step we have to consider P, = {Pair(f, )}
hence L, = {(1,f), (bc, fs)} and F = {F}.
SYMBOLICPREPROCESSING

Fo = {f,cls} T(F2) = {labc

,bc?,

abd

,acd, bed, cd?}




Example (Cyclic 4)
Fi = [fs = ad+bd+cd+d?, f; = ab+bc—bd —d?, f, = b?+2 bd + d?]

For the next step we have to consider P, = {Pair(f, f4)}
hence L, = {(1, %), (bc, fs)} and F = {F1}.
SYMBOLICPREPROCESSING

Fo = {f,cfs} T(Fs) = { abc| bc?,|abd|, acd, bed, cd?}
abd is reducible by bd f; but also by b f5 !




Optimisations

e including Buchberger Criteria (or F5 criterion).

o reuse all the rows in the reduced matrices.

o Improve the linear algebra step (dedicated algorithms, matrix
compression, ...)



F4 generated huge matrices




F4 generated huge matrices




F4 generated huge matrices




Need to compress the matrices !

(i) Compression bitmap: denote by

JisJ2s )3, - -
the position of the non zero elements in the matrix, then

Z]Q/k*1
k

is the corresponding bitmap.
This efficient but the reduction factor is not big (constant factor).



Compress the matrices

(i) Another idea is to consider the differences (Lempel-Ziv coding):

i |ie =t |is — -+

when the difference j, — jc_+ is small (< 128), — we can use one
byte to store the result.

This method is is more efficient wrt the memory usage and only
slightly slower (10%).



Algorithms

Algorithms: for computing Grébner bases.
e Buchberger (1965,1979,1985)
= First and Second Criteria
e 4 using linear algebra (1999) (strategies)
e F5 no reduction to zero (2002)
» Today — simple matrix Fs algorithm

e Signature-based Grobner computations (2008-. ..



Fs algorithm

o Goal: avoid useless reduction to 0
generate full rank matrices

e Incremental algorithm
(f1) + C';prev

e We have to explain: new Fs5 criterion



Fs an example 1

We consider the following example: (b is a parameter):

fh=3x>+ 7+ byxy+22xz+11yz+222% 4+ 8y?

fa=x2+18xy +19y? + 8xz +5yz + 722
Sp
fi=6x2+12xy +4y? +14x2+9yz +72?

For now we assume that b =0
With Buchberger x > y > z:

e 5 useless reductions
e 5 useful pairs



Fs an example 11

We proceed degree by degree.

X< Xy y° Xz yz z
2 /1 18 19 8 5 7
2T K| 3 7 8 22 11 22
fil6 12 4 14 9 7
x> xy y? xz yz Z2?
A _h|1 1819 8 5 7
27 5 1 3 2 4 -
f, 1 -11 -3 -5

“new” polynomials 7, = xy + 4 yz +2xz + 3y? — z? and
fs =y? —11xz—-3yz—-52°



Fs an example II1

f3=x%>+18xy +19y? + 8xz +5yz + 7 2?
h=3x2+7xy+22xz+11yz 422272+ 8y?
fi=6x2+12xy +4y? +14xz2+9yz + 722
fa=xy+4yz+2xz+3y?— 22

fo=y? —11xz—-3yz—-52°

fo — Iy
fo s £



Degree 3 (first try)

fa=x%+18xy +19y? + 8xz + 5yz + 7 2?
h=3x2+7xy+22xz+11yz+2222 +8y?
fi=6x2+12xy +4y? +14xz+9yz +72?
fo=xy+4yz+2xz+3y?—2?

fs=y? —11xz—-3yz—-52°

and

fo — 1y
fo— fs



Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

O~ OO0WOO

>
N

z

coRNowmo =

—
o




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

o,

—
©
)
oou,\,owooo@

O~ OO0WOO

N

>
N

—
o




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

N
oo o@e O

O~ OO0WOO

>
N

—
o




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

N
oo o@e O

O~ OO0WOO

>
N

—
o




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

o@ﬁ o@oo o@

O~ OO0WOO

>

—
o

N
N




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

o@ﬁ o@oo o@

O~ OO0WOO

>

—
o

N
N




Degree 3 (first try)

Already
Done !
fo — Iy
fi — f5

Zf3
i
Xf3
Zf2
A3 . yf2
Xf2
zf;
yh
xf

x3

DO O WOO 00

X2y xy?
0 0

18

19

-
[0¢]

—

NP ONWO
—

Ao

—
©° %

o(:)B oc:)w<3(:)

O~ OO0WOO

>

—
o

N
N




Degree 3

x3 X2y xy? y® Xz xyz y?’z xz?

zfs 1 18 19 8
yis i 18 19 0 8 5 0
x| 1 18 19 0o 8 5 0 7
zfy 1 3 2
Az = yfy 1 3 0 2 4 0
Xy 1 3 0 2 4 0 22
zfs 1 12
yfs i 0 12 20 O
xfs i 0 12 20 0 18

cogpgooNoo~wN,




Degree 3

Xf3
28
v
ng
Zf3
Zf2
zf;
vh
xf

X3
1

X2y xy? )P
18 19 O
1 18 19

1 3

1

X’z xyz y’z xz°

5

N —= OO

=
N

yz

22
18

20
11




Degree 3

Summary: we have constructed 3 new polynomials
fs = y® +8y%z+ xz° + 18 yz%2 + 15 2°

fr=xz°> +11yz?> +132°
fg = yz? + 18 28

And we have the linear equivalences:

Xf2<—>Xf4<—>f6
fa — I



Degree 4

The matrix whose rows are

is not full rank !



Why ? (1)

6 x 3 =18 rows
x4 x3y,...,yz% z* 15 columns



Why ? (1)

6 x 3 =|18 rows|
x*,x%y.....y 2% z* 15 columns|

Simple linear algebra theorem: 3 useless row (but which ones ?)



Trivial relations

hlh—fh=0

can be rewritten

3x2f+ (74 b)xyf +8y?f +22xzf;

+1yzf + 222213 —

X2 f2

—18xyfh —19y% 1,

—8xzb—5yzb—72°H =0

We can remove the row x°f

same way fif3 — f3f; = 0 — remove x?f
but fifo — frfy = 0 —> remove x2f; | 2?22



Combining trivial relations

(fy — fif) — 3(fi — fifs)
= (fg - 3f3)f1 — fifo + 3f1f3
= |fu|fy — o+ 3fifz

o o oo
|

= ((1— b)xy+4yz+2xz+3y2—22)

—(6x% + - ) +3(6x° + - )fy

e if b#1remove xy fi
o if b=1remove yz f

Need “some” computation




Degree 4 1

y2f17XZf17ny1722f17xyf27y2f27XZf27
y zh, Z2hy, X213, X yh3, y2 13, X Zf3, y 23, Z%f3

In order to use previous computations (degree 2 and 3):

Xf2 — fe fg — f4
Xf1 — fg yf1 — f7
f, — fs

v, zly, zfr, 2215, s, y2 1, 2l y 21y,
221y, x2hy, X b5, Y213, X 23, y 23, 2213,



Degree 4 11

1 18 19 0 0

1 18 19 0

o o o o O

-
©

© v o

19

18

a o o
- o o o o
o N oo o
o N O o o o o

-
©

22
18

13
20

18
13
18
22




Degree 4 111

1 18 19 0o 0 8 5 0 0 7|0 0O 0O 0 0
1+ 18 19 0 0 8 5 0 0|7 0 0O 0 0
1 18 19 0 0 8 5 0[]0 7 0 0 0
13 0 0 2 4 0[]0 2 0 0 0
t 0o 0 o0 8 O0[1 18 0 15 0
1 18 19 0 8|5 0 7 0 0
1 18 19 0|8 5 0 7 0
Ay = 13 0|2 4 0 2 0
1t o]o 8 1 18 15
118 19 8 5 7
11 0 1 o
\ 112 20 18
\ 111 13
\ 118
| |1 3 2 4 22




Degree 4 IV

We need to consider only a small sub-matrix:

3 4

xyz? y2z%2 xz8 yz® z
vt /1 11 0 13 0

2215 1 12 20 18
L= zf 1 11 13
2fy 1 18

26\ 1 3 2 4 22



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(fgfg — f3f2) + V(f1 fz — f3f1) + W(f2f1 — fi f2) =0



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(f2f3 — f3f2) + V(f1 f3 — f3f1) + W(f2f1 — f1 f2) =0
where u, v, w are arbitrary polynomials.

(ng—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(f2f3 — f3f2) + V(f1 f3 — f3f1) + W(f2f1 — f1 f2) =0
where u, v, w are arbitrary polynomials.

(ng—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0

(trivial) relation hfy +--- =0« held(fh, f)



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(fgfg — f3f2) + V(f1 f3 — f3f1) + W(f2f1 — f1 f2) =0
where u, v, w are arbitrary polynomials.

(WfQ—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0

(trivial) relation hfy +--- =0« held(fh, f)

Fs Criterion: compute a Grobner basis G’ of Id(f, f3).

’ Remove row { f; iff t reducible by LT(G')

| Keep row tf; iff t not reducible by LT(G)
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