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FGLM: Change of the Ordering



Improve the efficiency

The goal is to speed up the computation of Grébner basis:
@ obtain some speedup for the direct computation Grébner basis:
Buchberger, Magma default (F4) or any other algorithm.

@ compute a Grébner basis in several steps: the lexicographical
ordering is the to compute the solutions but the
computation of Grébner basis for a total degree ordering is

The FGLM algorithm allows us to to use linear algebra to perform a
change of ordering of a Grébner basis of a zero dimensional ideal.



Need to use several algorithms

Input System

Buchberger’s algorithm

Grébner Basis: total degree

FGLM algorithm

h 4

Grobner Basis: lexicographical

h 4

(Triangular Sets)

h 4

Factorization or real roots isolation




Input of the new algorithm

We assume that the ideal / is zero-dimensional and that we know a
linear map:

. _<K[x1./...,xn] > K[xh...,xn]//)
a p — p

which is a normalForm, that is to say satisfies the following conditions:

¢)(p) =0ifandonlyif pe /

1P q) =P 21(q) = ¢i(ei(p) - »i(q))
pop =1



Input of the new algorithm

o < ]K[xhb..,xn] — K[xh...,xn]//)

—> p
which is a normalForm, that is to say satisfies the following conditions:

v/p)=0ifandonlyifpe /

ei(P-q) =¢i(P-¢i(q) = ¢i(ei(P) - ¢/(q))

pop =y
A natural choice is to take ¢,(p) = NormalForm(p, G, <). In that case,
the kernel ¢, is exactly the ideal / :

ker (p;) = | (Buchberger’s Theorem).



Input of the new algorithm

which is a normalForm, that is to say satisfies the following conditions:

oi(p)=0ifandonlyifpe /
ei(p-q) =@i(p-vi(q) =pi(ep) - ¢i(q))
pop =10

Example

Gepm = [X2 — 38X — x1 +1,x5 — 21 + xo — 1] is a GrObner basis wrt
then monomial ordering DRL with x> > xy. Then

o p— NORMALFORM(p, G-pp )

is a linear map and ker (¢) = | = 1d (G<pg ) -



We say that p and g are congruent modulo /, written p = q, iff
¢ (p) =¢(q).

Let | = K[x1,...,xn]| be an ideal. Then the congruence modulo | is an
equivalence relation on K[xq, ..., Xp].




We say that p and g are congruent modulo /, written p = q, iff
¢ (p) =¢(q).

Let | = K[x1,...,xn]| be an ideal. Then the congruence modulo | is an
equivalence relation on K[xq, ..., Xp].

An equivalence relation on K[xy, ..., x,] partitions K[xq, ..., x,| into a
collection of disjoint subsets called equivalence classes.

Forany p € K[x1,..., x|, the class of p is the set

p=1{qeK[xy,....x] | ¢(q) = ¢ (p)}

Very often, in the following we will identify p and p !
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Q| Qf
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¢ (p) =¢(q).

Let | = K[x1,...,xn]| be an ideal. Then the congruence modulo | is an
equivalence relation on K[xq, ..., Xp].

An equivalence relation on K[xy, ..., x,] partitions K[xq, ..., x,| into a
collection of disjoint subsets called equivalence classes.

Forany p € K[x1,..., x|, the class of p is the set

p=1{qeK[xy,....x] | ¢(q) = ¢ (p)}

Very often, in the following we will identify p and p | We can define the
following ring operations:

p+q
pxq

+
X

Q| Qf

ol ol

This is also a Vector space : K[xq,...,Xxp]/ker(p) = K[x1,...,xn]//



Basis of the vector space

Definition (staircase of an ideal)

Let / be an ideal in K[xy,...,x,] and (G, <) a Grébner basis of /, then
we define the staircase of G by

E(G) = {te T | tis notreducible byG} sorted wrt <.

We say that it is the canonical basis (wrt G) of the K-vector space



Zero dimensional ideal

Recall that we have a criterion to determine when a system of
polynomial equations over KK has only finitely many solutions:

| ideal generated by {fi, ..., fm).
G Grébner basis of | wrt <
The algebraic variety Vi-(1) is finite iff
Vie{1,...,n} there exists g; € G such that LT(g;) =
or{te T | tis not reducible by G} is finite.

ki
i




Example

Gepm = [X2 —3Xx2 — X1 + 1,2 — 2x1 + xo — 1] a Grobner basis wrt a
DRL ordering such that x> > x;.

Any polynomial
f=—x2—x2+7x1%

is first reduced wrt G,

NF(f, G<DRL)

And so in the canonical basis 13 the polynomial f can be represented by
the vector :



Example

Gepm = [¥2 —3X2 — X1 + 1,2 — 2 Xy + Xxo — 1] a Grobner basis wrt a
DRL ordering such that x> > x;.
E(G) ={wy =1, W = X1, W3 = X, Wy = Xq Xp}

B = {wy, Wa, W3, Wy} is a basis of the K-vector space K|[xq, ..., xa|/I.

Any polynomial
f=—x2—Xx54+7xX

is first reduced wrt G,

NF(f G<DRL) = —3Xy —2Xo+ 7 X1 Xo
— _3W, — oW + TW;

And so in the canonical basis 13 the polynomial f can be represented by
the vector :

[0,-8,-2,7]



Ideal of dimension O
Definition (staircase of an ideal)

Let / be anideal in K[xq,...,x,] and (G, <) a Grobner basis of /, then
we define the staircase of G by

E(G) = {te T | tis not reducible by G} sorted wrt <.

This a canonical basis (wrt G) of the K-vector space K|xi, ..., xy|/I.



Ideal of dimension O
Definition (staircase of an ideal)

Let / be anideal in K[xq,...,x,] and (G, <) a Grobner basis of /, then
we define the staircase of G by

E(G) = {te T | tis not reducible by G} sorted wrt <.

This a canonical basis (wrt G) of the K-vector space K|[xq, ..., x,]|/I.

The algebraic variety Vi({fy, ..., fm)) is finite iff D = #E(G) < w. D is
the number of solution (counting with multiplicities), in the algebraic
closure, of the polynomial system |[f, ..., fy].




Ideal of dimension 0

Definition (staircase of an ideal)

Let / be anideal in K[xq,...,x,] and (G, <) a Grobner basis of /, then
we define the staircase of G by

E(G) = {te T | tis not reducible by G} sorted wrt <.

This a canonical basis (wrt G) of the K-vector space K|[xq, ..., x,]|/I.

The algebraic variety Vi({fy, ..., fm)) is finite iff D = #E(G) < w. D is
the number of solution (counting with multiplicities), in the algebraic
closure, of the polynomial system |f, ... fm].

We denote by D = deg(/) = #&(G) the dimension of the K-vector
space K|xq, ..., xp]// (this is also the degree of the ideal /).

We assume that:
S(G) = {W1 =1< Wo < --- < Wdeg(l)}



What is the expected number of solutions ?

Assume that K is algebraically closed. Let | — K[xq,....x,| be a
zero-dimensional ideal generated by [fi, ..., f,] then

n
D = deg(/) < | [ deg(f)
i=1

For instance for n quadratic equations in n variables the bound is 2".



What is the expected number of solutions ?

Assume that K is algebraically closed. Let | — K[xq,....x,| be a
zero-dimensional ideal generated by [fi, ..., f,] then

= deg(/) H deg(f;

For instance for n quadratic equations in n variables the bound is 2".

The probability that a ran- probability to have no solution

dom polynomial system of
n + k random equations of
degree-d (d = 2) in n vari-
ables over I, has no solu-
tion is e=P~" (asymptotically)




Example

In Q[x1, x2] the list Gy, = [X2 —3X — X1 +1,X5 —2Xx1 + X, — 1] isa
Grobner basis wrt a DRL ordering such that x> > x; ; we try to compute
a lexicographical (xo > x;) Grébner basis of /d(G).

staircase: £(G) = {t e T | tis not reducible by G}



Example

In Q[x1, x2] the list Gy, = [X2 —3X — X1 +1,X5 —2Xx1 + X, — 1] isa
Grobner basis wrt a DRL ordering such that x> > x; ; we try to compute
a lexicographical (xo > x;) Grébner basis of /d(G).

staircase: £(G) = {te T | tis not reducible by [xZ, x|}



Example

In Q[x1, x2] the list Gy, = [X2 —3X — X1 +1,X5 —2Xx1 + X, — 1] isa
Grobner basis wrt a DRL ordering such that x> > x; ; we try to compute
a lexicographical (xo > x;) Grébner basis of /d(G).

staircase: g(G) = {W1 =1, W = X1, W3 = Xo, W4 = Xy X2}



Example

IS a

—2X1+X2—1]'

2
, X5

’

— 33X — Xy + 1

2
]

[x

Grobner basis wrt a DRL order

In Q[xy, x2] the list G-,

; we try to compute

h that xo > x4
bner basis of Id(G).

ing suc

Gro

)

a lexicographical (x> > xq

£(G) = {wy

staircase

canonical basis of the staircase

OW,‘
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The system has 4 complex roots.
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FGLM algorithm

FGLM=Faugere, Giani, Lazard, Mora, JSC, 1994

Input: <> a monomial ordering and NF a normal form.
Output: reduced Grobner basis / wrt <o
where | = {f € K[xq, ..., Xn] | NF(f) = 0}
[ ] //list of next terms to study
[ ] //the staircase wrt the new ordering <»
[] #/V =NE(S)
=[], t:=1
|nf|n|te loop

==
S:
V




infinite loop
v := NF(f) and s := #S is the number of elements in S.
if v e Vectg (V) then

S
we canfind (\;) st. v = > A -V
i=1

G::Gu[t—i)\,-s,-]

i=1
else
S:=Su(tland V:=V uU|[v]
L:=Sort(Lu[xt|i=1,...,n],<5)
Sort L by increasing order (wrt <») and
remove duplicates and multiple of LT(G)
if L = ¢ then
return G
{ := first(L) and remove ¢ from L.




Compute normalForm using linear algebra

We are working in the K-vector space K[x1, ..., x,]// using the
canonical basis wrt < (old ordering: G is a Grébner basis wrt <):

5(6) = {W1 =1< Wo < --- < Wdeg(l)}~
If fe K[xq,...,xn] we can compute NF(f, G) € K[xq,...,Xxn]/]
using the FULLREDUCTION algorithm but it is difficult to obtain a

precise bound of complexity !

This can be done with linear algebra; more precisely only matrix vector
products.



Border of an ideal

The staircase £(G) is stable under division:

If1 + e e £(G) then for all i such that x; divides e we have ¢ € £(G).

We try to estimate the number of elements in G with respect to
deg(/) = D;to this end we define the border of the staircase:

Definition (Border of a Grébner basis)
let £(G) be the canonical basis of K[x1, ..., x,| //, then the border of G
is:

F(G)={xe|lec&(G),1<i<nandx;e¢ E(G)}



Example

Gepp = [X2 —3x2 — X1 +1,X5 —2x1 + xz — 1] is a Grobner basis wrt
the DRL ordering with x> > Xxj.
border of G: F(G) = {xje | ec £(G), 1 <i<nand xje¢ E(G)}

X sborder of the staircase
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S s
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o %,

F(G) = {2, . e, 3138



dim (/) =0, (G, <) a Grdbner basis, then

LT(G) c F(G) c LT(G) u {x;t' | ' € F(G) and 1 <j < n}




dim (/) =0, (G, <) a Grdbner basis, then

LT(G) c F(G) c LT(G) u {x;t' | ' € F(G) and 1 <j < n}

® Elements in the Grébner basis
B Other elements in the border of the staircase

X2




dim (/) =0, (G, <) a Grdbner basis, then

LT(G) c F(G) c LT(G) u {x;t' | ' € F(G) and 1 <j < n}

® Elements in the Grébner basis
B Other elements in the border of the staircase

X2




dim (/) =0, (G, <) a Grdbner basis, then
LT(G) c F(G) c LT(G) u {x;t' | ' € F(G) and 1 <j < n}

® Elements in the Grobner basis
B Other elements in the border of the staircase

X2

The number of elements of a
Grébner basis of a zero-dimensional
ideal I is bounded by n deg(/).

X1




Computing normal Form using linear algebra

We take advantage of the structure of the vector space to compute in

polynomial time the normal forms. When running the FGLM algorithm
we have to compute ¢,(t) in the following case:



Computing normal Form using linear algebra

We take advantage of the structure of the vector space to compute in
polynomial time the normal forms. When running the FGLM algorithm
we have to compute ¢,(t) in the following case:
e if t € £(G) we have ¢,(t) = t hence no computation !
e if t = LT(g) for some g € G (g monic) then ¢,(t) =t —g
e if te 7(G)and t ¢ LT(G) then using the previous proposition we
have t = x; 1" and since ' < t we have already computed
p = ¢,(t") and so we have to compute ¢,(t) = ¢,(x; - p) .



Computing normal Form using linear algebra

We take advantage of the structure of the vector space to compute in
polynomial time the normal forms. When running the FGLM algorithm
we have to compute ¢,(t) in the following case:
e if t € £(G) we have ¢,(t) = t hence no computation !
e if t = LT(g) for some g € G (g monic) then ¢,(t) =t —g
e if te 7(G)and t ¢ LT(G) then using the previous proposition we
have t = x; t and since t' < { we have already computed
p = ¢,(t') and so we have to compute () = ¢;(Xx; - p) .
Definition (Multiplication by one variable)
For all 1 < k < n, consider the following linear map:

¢ Fr— @)(x; f)

In the canonical basis the matrix representation of ¢; is the so called
multiplication matrix M of size deg(/) x deg(/) such that :

M = the coefficient of w; in )(x, w))



Example

G<DRL = [X12 —3X2 — Xy + 1,X22 —2X{ + Xo — 1]
E(G) = {W'l = 1a Wo = X1, W3 = Xo, Wq = Xq XQ}
We can compute the matrix multiplication by x; and x»:

XYWy XqWo X{W3 XqWy

W+ 0 -1 0 3
MO = wp |1 10 6
ws | O 3 0 -4
wy | O 0 1 1
Xo WA XoWo XoWs Xo Wy
wy | O 0 1 -2
M® - w0 0 2 3
ws |1 0 -1 6
ws | O 1 0 -1




Kronecker's delta: 6;; =1if i = jelse 0 .

Initialisation of the matrices
E(G) = {w1 =1 < Wz < < Wyeg()) } canonical basis wrt G.
N := [] // an array of polynomial indexed by T
// and satisfying that for all t € T : N[{] = NF({, G, <)

for i from 1 to deg(/) do

N[w;] == w;

for each k such that w; = X w; do

MY =6 forall e {1,....n}

= ijw,- pourj=1,....ni=1,... deg(/)]
sort F wrt <, remove duplicates and the elements of £(G).




sort F wrt <, remove duplicates and the elements of £(G).
for tin F do
if fis a strict multiple of some leading term of G then
t=xt witht <t
We have already computed N[t'] = 37 | 11;w; with 11; € K and ws < 1/
N[t] = 337 1 Col(MD), i) = 33550 Aw;
for each k such that f = x, w; for some our un certain / do
MY = iforallie {1,...,n}
else
there exists g = t+ Zdeg A\iwj et \je K e G suchthatt = LT(g)
NIt = — 50w,
for each k such that t = x, w; for some j do
MY .= _xforallie{1,...,n}
return M(k )/ matrix multiplication by Xk




Complexity: compute the matrices

The previous algorithm computes the matrices M%) and the
complexity is bounded by O(n deg(1)®).




Matrix version of FGLM

We need to have a simple linear procedure to detect linear
dependency of vectors in the K-vectorial space K|[xq, ..., xs]/I.

The invertible matrix P represents a change of basis between the old
basis

S(G) = {W1 =l<wmw<- - < Wdeg(l)}

and the new basis S. That is to say thatif S = [+, ..., 24, | then at
any step of the algorithm we have:

S=P-£(G)

At the beginning S = [w; |, and we compute successively the vectors
v = o(x, w) = MY . w where v, w are the vectors wrt the basis £(G):

deg(/)

V= 2 Vi W



Matrix version of FGLM

At the beginning S = [w4 ], and we compute successively the vectors
v = o(x,w) = M%) . w where v, w are the vectors wrt the basis £(G):

To test linear independence we can simply compute:

deg(/)
A=P.v= Y \W
i=1

Qif )\#3+1 == )‘deg(l) = 0 then v € Vectg (S)
@ if there exist k > # S such that A\, # Othencyg ¢ := Aisan
independent vector. We compute a matrix P’ such that:

P.v="10,...,0,1,0,...,0] = c45.1



Updating the Change of Basis Matrix

Input: s € N, a vector A and matrix P
Output: a new matrix P’

k := min {j > s such that \; # 0}
for j from 1 to deg(/) do

Pk

a:= g Pk = Psi1) Psi1j = a
if a # 0 then
for i from 1 to deg(/) such that /i # s + 1 do
P,"j = P,'J' — Oz)\,'

return P




Input: < new monomial ordering, M%) multiplication matrices
S=[1],V:i=[wm], G:=[], t:=(n1)
Li=[(i,1),i=1,....(n—1)]/ (i,]) equivalent to x; S]]
P := ljeg(1) change of basis matrix betwen the new basis S and £(G)
infinite loop

S := #S number of elements in S.

t = (k,I): we compute v=M¥ . Vand =P v

if Agpi =+ = >‘deg(l) = 0 then
s
G:=Gu {XKS/— Z )\,"S,']
i=1
else

P :=UPDATE(s, A, P)

S:=Su [XkS/] and V.=V u [V]
L:=Sort(LU|[(i,s)]i=1,...,n],<)

Sort L wrt <, and remove duplicates and multiple of LT(G)
if L = ¢ then return G

t := first(L) and removes { from L




Example
n=2and Gy = [X2 —3X — X1 + 1,5 —2X1 + X — 1]
g(G) = {W'I = 17W2:X1;W3 = Xo, Wq = X4 Xz}

Lexicographical ordering with x> > x;.
Multiplication matrices by x; and x»:

XiWi XqWe XqWs Xi Wy

wy | O -1 0 3
MDD = wy | 1 1 0 6

wz | 0 3 0 -4

wy | O 0 1 1

XoWqi XoWo XoWs Xo Wy

wy | O 0 1 -2
M = w, | 0 0 2 3

W3 1 0 -1 6

wy | O 1 0 -1

L:=1[2,1)],S:=[1],V = [wy],G:=[],t:= (1,1) represent the
monomial x; - S; = x4, P == Iy



Example

Step 1: Since t = (1,1), we compute v := M) . vy = M(D .1 = wp
and\=P-v=w="[0,1,0,0]

Hence X2 # 0, S := [1,x1], V := [wy, wo] and the matrix P is left
unchanged.

We update L: L :=[(1,2),(2,1),(2,2)].



Example
Step 2: Since t = (1,2), we compute v := M) . Vo = M) .y, =T
[—1,1,3,0]
and\=P-v="[-1,1,3,0] := V3
since \3 # 0, S:= [1,x1,x2], V := [wy,wn,” [-1,1,3,0]], then

10 13 0
p._ |01 =130
~loo 13 0

00 0 1
We update L : L:= [(1,3),(2,1),(2,2), (2,3)].



Example
Step 3: t = (1,3). We compute v := M . Va3 = M) .T[—1,1,3,0] =7
[_170a373]
and
A=P-v="T10,-1,1,3]

Since \s # 0, S := [1,x1,x2,x3], V := [wy, wp, V3,7 [-1,0,3,3]], and
then

10 13 0
p._ |01 —1/3 1/3
~lo o 13 -1/3

00 0 1/3

We update L :=[(1,4),(2,1),(2,2),(2,3),(2,4)].



Example

Step 4:t = (1,4). We compute v .= M. v, = M) .T[—1,0,3,3] =7
9,17, -12,6]
then A= P.v =T [5,23,-6,2]

since \s = 0, we find a polynomial G := [x{ —2x3 + 6 xZ — 23 x; — 5]
and now L :=[(2,1),(2,2),(2,3),(2,4)].



Example

Step 5: t = (2,1). We compute v := M@ . V; = M@ . wy = wjy
and A =P-w; =T [1,5,3,0]
since A\s = 0, G:= [x} —2x3 +6x2 —23x —5,x — Ix2 + 1x — 1],
by removing multiples of LT(Gz) = x», we obtain L := ||
and the FGLM algorithm stops.



The complexity (number of operations in K) of the FGLM and the
matrix FGLM algorithms is bounded by O(ndeg(/)®). Moreover, the
result is a Grobner basis.




The complexity (number of operations in K) of the FGLM and the
matrix FGLM algorithms is bounded by O(ndeg(1)®). Moreover, the
result is a Grébner basis.

Remark

Let V be the algebraic variety associated to the ideal {fi,...,fn) in n
variables. When the system has a finite number of solutions:
@ We can compute P(x,) the smallest polynomial in a
lexicographical Grébner basis as the minimal polynomial P of the
matrix V(") .

@ The projection of V on K|[x,] is thus the eigenvectors of the
matrices M("),




Application of polynomial system solving: Algebraic Crypto

° ‘ Evaluate the security of existing cryptosystems. ‘

- Investigating the security of extensively used cryptographic
standards — such as AES, SHA, RSA and new post-quantum crypto
systems — against the most powerful attacks is a permanent
concern.
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huge impact, from a scientific and also economical point of view.
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Application of polynomial system solving: Algebraic Crypto

° ‘ Evaluate the security of existing cryptosystems. ‘

- Investigating the security of extensively used cryptographic
standards — such as AES, SHA, RSA and new post-quantum crypto
systems — against the most powerful attacks is a permanent
concern.

 Any progress in the cryptanalysis of such standards could have a
huge impact, from a scientific and also economical point of view.

« General methods have been proposed: linear cryptanalysis,
differential cryptanalysis, ...

=" describe another general method : Algebraic Cryptanalysis .



Algebraic cryptanalysis

In this talk — another general method: Algebraic Cryptanalysis

e Model a cryptosystem as a set of algebraic equations
e Try to solve this system (or estimate the difficulty of solving it)




Algebraic Cryptanalysis: model

Very simple idea:
D Model a cryptosystem as a set of algebraic of equations:

f1 (X1,...,Xn):0
S

fm(X‘],.Xn):O

where all the fj € K[xq,. .., x,] and K is a finite field (for instance
K =TF5).



Algebraic Cryptanalysis: solving

D Evaluate the difficulty of solving the corresponding algebraic
system S.

Vk ={z=(z1,...,20) e K" | fi(2) = --- = (2) = O}

\—> General Method: new criteria to evaluate the security. \




Approach

e Model a cryptosystem as a set of
algebraic of equations
“universal” approach
(PoSSo is NP-Hard) )
several models are possible !!!

e Solving

» Minimize the number of
variables/degree

» Maximize the number of
equations

Grobner Bases computations:
Algorithms + Complexity

Solving algebraic systems :

e Huge systems

e Sparse/structured
systems

o Try to predict
accurately the
complexity of
computing Grébner
basis for particular
instances.




Crypto example: AES

A Zero-Dimensional Grobner Basis for AES-128
Buchmann, J. and Pyshkin, A. and Weinmann, R.-P.

Abstract. We demonstrate an efficient method for computing a Grébner
basis of a zero-dimensional ideal describing the key-recovery problem
from a single plaintext/ciphertext pair for the full AES-128. This Grobner
basis is relative to a degree-lexicographical order. We investigate whether
the existence of this Grébner basis has any security implications for the

AES.
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Buchmann, J. and Pyshkin, A. and Weinmann, R.-P.

Abstract. We demonstrate an efficient method for computing a Grébner
basis of a zero-dimensional ideal describing the key-recovery problem
from a single plaintext/ciphertext pair for the full AES-128. This Grobner
basis is relative to a degree-lexicographical order. We investigate whether
the existence of this Grébner basis has any security implications for the

AES.
3.2 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial

over F:

g:F — F, z+ 05225 409225 + Foz?! 4 255247 4 Fax?394 @)
B52%23 + B9x'! + 8Fz!%" + 63



Crypto example: AES

3.2 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial
over F:

0 F—F, x> 0522+ 0922 + F9a?! + 254247 4 FA 2394 @
B52%23 + Box!%! + 8Fx!'?" + 63

3.5 Choosing a Suitable Variable Order
The plaintext and ciphertext polynomials simply are of the form
zio+p  pEF0<i<I5 (13)
respectively
zio+e ¢ EF0<i<I5 (14)
Let A be the union of the left-hand side of equations (9), (10) and (12)
for all rounds 1 < j < 10 as well as the plaintext and ciphertext poly-

nomials. Ordering the variables as follows makes all head terms pairwise
prime:

1. plaintext variables: 299 < ... < 150

2. ciphertext variables: zg,10 < ... < 215,10

3. key variables of all rounds in natural order: koo < k1,0 < ... < k15,10
4. intermediate state variables in their natural order



Crypto example: AES

3.5 Choosing a Suitable Variable Order

The plaintext and ciphertext polynomials simply are of the form
zio+p p€F0<i<15 (13)

respectively
Ti0+ ¢ e F0<Li< 15, (14)

Let A be the union of the left-hand side of equations (9), (10) and (12)
for all rounds 1 < j < 10 as well as the plaintext and ciphertext poly-
nomials. Ordering the variables as follows makes all head terms pairwise
prime:

1. plaintext variables: zgo < ... < Z150

2. ciphertext variables: zg 10 < ... < 15,10

3. key variables of all rounds in natural order: koo < k10 < ... < k15,10
4. intermediate state variables in their natural order

The degree lexicographical term order with the above variable order
will be in the following be referred to as < 4. By Theorem 1, the set of
polynomials A is a Grobner basis relative to this term order! Moreover,
checking Lemma 1 we verify that this ideal is zero-dimensional.



Crypto example: AES

This result is sufficient to give a bound on the complexity of the
Grobner basis conversion using FGLM. The following theorem is a slightly
rephrased version of Theorem 5.1 in [12]:

Theorem 2. Let F be a finite field and R = F[z1, ..., xy,]. Furthermore
G1 C R is the Grébner basis relative to a term order <i of an ideal I,
and D = dim(R/I). We can then convert Gy into a Grébner basis G
relative to a term order <o in O(nD?) field operations.

dim(R/A) = 254200 21598




Fast FGLM

Jjoint work with C. Mou

Fast FGLM: High Performance Algorithm
and Implementation




Fast FGLM - Problem

with C. Mou

Input System

e Buchberger

e f4/Fs rely on linear
algebra

h

Grdbner Basis: total degree

e FGLM: ~ minimal polynomial

' .
Bottleneck! of some matrix

h

Grobner Basis: lexicographical
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Grobner Basis: total degree

o FGLM: ~ minimal polynomial
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h

Grobner Basis: lexicographical

Magma | MinRank(9,7,4) MinRank(9,8,5) | Random(14, 2) Random(15, 2

D 4116 14112 AL 275

Step 1 208.1s 3343.5s 7832.4s 74862.9s
Step 2 1360.4s >1 day 84374.6s >15 days




Fast FGLM - Problem

with C. Mou
Input System
e Buchberger
e F4/Fs rely on linear
i algebra
Grobner Basis: total degree
o FGLM: ~ minimal polynomial
Bottleneck! of some matrix
Grobner Basis: lexicographical
Magma | MinRank(9,7,4) MinRank(9,8,5) | Random(14, 2) Random(15, 2
D 4116 14112 214 210

Step 1 208.1s 3343.5s 7832.4s 74862.9s
Step 2 1360.4s >1 day 84374.6s >15 days

Goal: a faster algorithm for the change of ordering J




Key observation 1

with C. Mou

T1,..., Ty are sparse, especially T;.

T; x v = NormalForm(x; x v)

T for Random(3, 10): 1000 x 1000, 6.86%

DLP . MinRank
Cyclic10

Edwards (9,9,6)
D 4096 34940 41580
Sparsity 3.4% 1.0% 16%
Random(3, 14) | Random(3, 40)

D 2744 64000

Sparsity 4.2% 1.6%




Key observation 1

with C. Mou
Ti,..., T, are sparse, especially T.
T; x v = NormalForm(x; x v)
DLP . MinRank
Cyclic10
Edwards (9,9,6)
D 4096 34940 41580
Sparsity 3.4% 1.0% 16%
Random(3, 14) | Random(3, 40)
/ D 2744 64000
/ Sparsity 4.2% 1.6%
S
// n is fixed. For generic polynomial systems of
// degree d:
//
T, for Random(3, 10): 1000 x 1000, 6.86% % of nonzero entries 4 S | & ——




Key observation 2
The cost of a matrix/vector multiplication T x vis| #T « D?
Any polynomial >, csx® in the Grébner basis is a minimal relation:

dlesTy - T 1 =0.
S

Define a n-dimensional mapping £ : 77, — K as

V:(S1,...,80) —> (T{'--- T3, ry  rrandom vector.
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S

Define a n-dimensional mapping £ : 77, — K as

V:(S1,...,80) —> (T{'--- T3, ry  rrandom vector.

Find minimal recurrence relation of ¥ « can be found using BMS
(Berlekamp-Massey-Sakata from Coding Theory)

Multi-dimensional generalization of Berlekamp—Massey algorithm
[Sakata 1988 & 1990; Saints and Heegard 2002]



Key observation 2
The cost of a matrix/vector multiplication T x vis| #T « D?
Any polynomial >, csx® in the Grébner basis is a minimal relation:

desT - T = 0.
S

Define a n-dimensional mapping £ : 77, — K as

V:(S1,...,80) —> (T{'--- T3, ry  rrandom vector.

Find minimal recurrence relation of ¥ « can be found using BMS
(Berlekamp-Massey-Sakata from Coding Theory)
Multi-dimensional generalization of Berlekamp—Massey algorithm
[Sakata 1988 & 1990; Saints and Heegard 2002]
Recent results:
e Linear Algebra for Computing Grébner Bases
of Linear Recursive Multidimensional Sequences, [Berthomieu, F. 2015]
e A Polynomial-Division-based Algorithm for Computing Linear
Recurrence Relations, [Berthomieu, F. 2018]



Easy case: Shape position case

Assume that / is in shape position:

ldeal / < K[xq,..., x| is in shape position if its Grobner basis w.r.t.
LEX (x4 < --- < xp) is of the form

[f1 (X1),X2 = f2(X1), ooy Xp — fn(X1)].
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Construct s = [(r, T{1): i =0,...,2D — 1|, with r a random vector

U

Compute 7 from s via Berlekamp—Massey algorithm

\
Check deg(f;) = D




Easy case: Shape position case

ldeal / < K[xq,..., x| is in shape position if its Grobner basis w.r.t.
LEX (x4 < --- < xp) is of the form

[f1 (X1),X2 = f2(X1), o009 Np = fn(X1 )]

Construct s = [(r, T{1): i =0,...,2D — 1|, with r a random vector

U

Compute 7 from s via Berlekamp—Massey algorithm

\
Check deg(f;) = D ~~ shape position




NormalForm(x; — >2=1 ¢ xx¥) = 0




Shaie iosition case

NormalForm(x; — >2=1 ¢ xx¥) = 0
U

T = 30— G- T




NormalForm(x; — >2=1 ¢ xx¥) = 0
DU1
Tl =20 Cik- T1k‘l
|

TITA = S5 cik - T{TH




NormalForm(x; — >2=1 ¢ xx¥) = 0
J
T,'1 = Ez_(; Ci,k ° T1k1
. U H
TITA = X ciw - T TF1
|

0, T{T) = 502 G < T, =001




Shaie iosition case

NormalForm(x; — >2=1 ¢ xx¥) = 0
I
T,'1 = ,?z_(; C,'7k ° T1k1
. 4 .
T = 30 ok T
U
< TiT) = S025 ¢ <r Ty 1), j=0,...,D 1
U
(T, Ty = 50 Gi <T*Hr 1), j=0,...,D~1
where T’ = T!is the transpose matrix

We compute only one time the sequence of vectors
Vo="rvi=Trvy=T7r . . Vap_ 1= T?P"rusing

Vigr =T xv;

sothats = [(r, T{1) =(T"r,1) =(vj,1) : i=0,...,2D —1]




Shape position case

Solve: with ci='[Cio,..-.Cip-1]

(vo,1)  (vq,1) -+ (vpq,1)
B vi,1)  (vp, 1) - (vp,1)
<VD—-1,1> <VD.’1> <V20;2,1>

Matrix H is a Hankel matrix:



Shape position case

Solve: with ci ='[Cios---sCip1]

(vo,1)  (vq,1) -+ (vpq,1)
B vi,1)  (vp, 1) - (vp,1)
<VD—-1’1> <VD.’1> <V20;2’1>

Matrix H is a Hankel matrix:

e lIts construction is free

e ltis invertible: relationship between linear recurring sequences
and Hankel matrices [Jonckheere and Ma 1989]

e Solving efficiently H x = b: complexity O(D log?(D)) [Brent, Gustavson,
and Yun 1980].




Shape position case

Solve: with ci ='[Cios---sCip1]

(vo,1) (vq,1) -+ {vp_q,1)
B vy, 1) (vp, 1) - (vp,1)
o1y (Vo 1) - (Vap o 1)

Matrix H is a Hankel matrix:

e lIts construction is free

e ltis invertible: relationship between linear recurring sequences
and Hankel matrices [Jonckheere and Ma 1989]

e Solving efficiently H x = b: complexity O(D log?(D)) [Brent, Gustavson,
and Yun 1980].

Construction of {(T!)/r, T;1) is also free: v is also free.



Shape position case

O(D(N; + nlog?(D))): Ny = # T’ = #T; the number of nonzero
entries in T,

o compared with O(nD?) for FGLM
e computing the minimal polynomial of T;.




General Algorithm

Input: 73,...,T,

1

Construct the linearly
recurring sequence §

1

Compute f with BM

Recover fa,..., fn Compute F with BMS

End @
Yes No

End Compute G2 with FGLM|

1

End

Deterministic algorithm




Efficient Implementation

e Preliminary implementation of the BMS-based method for the
general case in Magma.

e Shape position case: first has been implemented in C over fields
of characteristic 0 and finite fields.

e We report also a new SSE/multicore implementation.



SSE 4.1 dotproduct fast implementation

16 bits implementation - Intel

Main operation: y := Tyx

The matrix vector product is equivalent to compute several dot
products:

D
(X,yy = > xy; mod p

i=1
e lazy reduction: we compute the modulo p only at the end

@ using 128 bits registers xmm0-15 that is to say 8 16bits words.

e Using SSE instructions we can perform 8 16-bits multiplications
simultaneously !

e unrolling the loop we perform 32 multiplications in one loop.



Multi-core implementation

Two parallel versions:
e Using Openmp
@ Using pthreads
5" have to rewrite the generation of the matrix T; !

Comparing original C-code (Issac 2011) and the new code:

| D %  Magma Singular New New+SSE

Katsura12‘4096 21.2% 1408s 2623.5s 18.1s 0.73s



Multi-core implementation

Two parallel versions:
e Using Openmp
e Using pthreads
5" have to rewrite the generation of the matrix T; !

Comparing original C-code (Issac 2011) and the new code:

| D %  Magma Singular New New+SSE
Katsura 12 4096 21.2% 1408s 2623.5s 18.1s 0.73s
Random(n=3,d=19) | 6859 3.50% 1084s 8248s 15.3s 0.74s




Linear Algebra
|dea of the Algorithms




Solve the following systems:

11 —62xy —73y?> =0

123 —7x2+22xy —94y°> =0
Si
—4-5x24+31xy+40y?>=0

and

132 —90x2 + 43 xy + 92x — 91 2

—20 —15x% —59xy — 96 x + 72 y?
S
5+11x%2+12xy +13x —17y?



Computing Grobner Bases: example

11 —-62xy —73y?> =0

123 —7x2+22xy —94y?> =0
—4-5x24+31xy+40y>=0
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Computing Grobner Bases: example

123 —7x2+22xy —94y?> =0

We linearize the problem;

x?' = ey, y? = e, xy = e, (forget that e;e3 = €5)

Solve a linear system:

123 —7e1+226 —94e3 =0
11 —-62e, —73e3=0
—4—-5e1+31e+40e3=0

Recover the solutions:

e :1,62:—1,93:1
X=—-y==1
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fy = =20 —15x%> —59xy — 96 x + 72 y°
fo =132 - 90x% + 43 xy + 92x — 91 )2
f3=5+11x2+12xy + 13x — 17 y?

Not enough equations ! Cannot Linearize !
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We obtain 6 + 3 equations and 9 variables:

2 3 2 3 2 2
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0 0 132 0 0 0 —91 92 —90 43 . es =0
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€10
—20 —96 0 —15 0 72 0 —59 0 0
132 92 0 —90 0 —91 0 43 0 0
| 5 13 0 11 0o -7 0 12 0 o |




Computing Grobner Bases: example (2)

fy = =20 —15x%> —59xy — 96 x + 72 y°
fo =132 - 90x% + 43 xy + 92x — 91 )2
f3=5+11x2+12xy + 13x — 17 y?

Not enough equations ! Cannot Linearize !
We generate “new” equations: x fi, x fo, xf3, y fi, y fo, y f3
We obtain 6 + 3 equations and 9 variables:

2 3 2 3 2 2
€2 =X,63=V,64 =X",65 =X",66 = )y",67 =)y", 68 =Xy,89 = XY,810 = Y°X

0 —20 0 —96 —15 0 0 0 —59 72 7]
0 132 0 92 —90 0 0 0 43 —91
0 5 0 13 11 0 0 0 12 —17
0 0 —20 0 0 0 72 —96 —15 —-59 912
0 0 132 0 0 0 —91 92 —90 43 . es =0
0 0 5 0 0 0 —17 13 11 12 .
€10
—20 —96 0 —15 0 72 0 —59 0 0
132 92 0 —90 0 —91 0 43 0 0
| 5 13 0 11 0o -7 0 12 0 o |

Solve: ey = —e3 =64 =---=1andrecover x = —y = 1
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Matrix representation of polynomials

Definition
If F = [fi,...,fn] is @ vector of m polynomials and < an admissible
ordering, T_(F) = [, ..., 1] the monomials in the support of F sorted

for <. The matrix representation of Mr_(r)(F) wrt F is:
h b B

M(F) =

M(F)t = coeff (f;, )

Moreover, M(F) satisfies the following equation:

F=M(F)-T(F)



Polynomial representation of a matrix

Definition

If M is a matrix of size / x m with coefficients in K and X = [f,..., {n]
is a vector of terms, then the polynomial representation of M wrt X is
the vector of / polynomials given by:

F=M-X



Example ( Cyclic 4 Problem)
The monomial ordering is DRL

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fh=a+b+c+d

The matrix representation of Fy = [f3, bfy, dfs] is:

ab b2 bc ad bd cd d?
0 0 0 1 1 1 1
1 0 1 1 0 1 0
1 1 1 0 1 0 0

dfy
fa
bfy

A =M(F) =




Example ( Cyclic 4 Problem)
The monomial ordering is DRL

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

The matrix representation of Fy = [f3, bfy, dfs] is:

ab b> bc ad bd cd d?
dfy 1 1 1 1
fa

bfy

2 = S ) = 1 1 1 1

1 1 1 1




Macaulay matrix

Definition (Macaulay matrix [8])

Let F = [fy,...,fn] a vector of m polynomials and d a non negative
acaulay

integer then the Macaulay matrix in degree d of F M~ (F), is the
matrix representation of

FO=[t-fil1<i<m and tie T with deg(f;) < d — deg(f)]

my Mme M3
t f

acaulay _ (d)y _
M (F) = M(F@) = 1 ¢



Echelon form of a matrix

The basis operation is to compute a row echelon form of matrix; this
will be the most costly operation.

Definition

If M(F) is the matrix representation of a vector of polynomials F we

———

denote by M(F) the Gaussian elimination of M(F) (without pivoting the
columns of the matrix).

We extend this definition to polynomials:
Definition
Let F — K[xy,...,xn] and < a monomial ordering. We denote by F the

polynomial representation of I\’/ITFJ) We say that F is the echelon form
of F (or a Gaussiant elimination) wrt <.









Example
The polynomial representation of:

ab b° bc ad bd cd d?
1 1 1 1

1 1 —1 —1
1 2 1

i fs = ad + bd + cd + d?,
F = f6=ab+bc—bd—d2,
f, = b?+2bd + d?




Macaulay method

The idea of using linear algebra to solve polynomial systems date back
to Macaulay.

Macaulay matrix is a generalization of the Sylvester matrix [7] ( the
matrix involved in the computation of the resultant of 2 polynomials).

The link between the computation of a truncated d-Grébner basis is
given by the following theorem of Lazard:

IfF ={fi,... I} is a set of homogeneous polynomials then
MM (F) is a (non reducible) d-Grébner basis of F.
IfF={fi,.... fn} is a set of polynomials, then there exists d > 0 such

—_——

that M (F) is a Grébner basis of F.




Macaulay bound

Let F = {fy,...,fm} Is a set of homogeneous polynomials which is a
regular sequence. We define

m
= Z deg(f;

then Ms™'™ (F) is a (non reduced) Grébner basis of F.




Regular sequence I

We consider the Macaulay matrix of F = [fy,..., ]

If the Macaulay matrix is singular «— the rows of the matrix are not
independent.

Moreover, each row of the matrix is a product t x f where f is a term
and f € F; the linear dependence can be expressed by

ter et Arf =0 or equivalently by grouping terms:

m
Yaifi=0 (1)
i=1

where g; are polynomials in K|[xy, ..., x,|. We say that (g1,...,9m) isa
syzygy. The relation (5) can be rewritten:

g1f; = 0 modulo Id(ng R fm) (2)

in other words it is a zero divisor (if g # 0).



Regular sequence I1

A linear system is non singular if one cannot find a non zero linear
combination:

m
D INifi=0with \; e K (3)
i=1

For algebraic systems: it is not possible to avoid non zero relations (5) :

fifi—ff=0 (4)

We say that it is a trivial syzygy.



Regular sequence I

We consider the Macaulay matrix of F = [fy,..., ]

If the Macaulay matrix is singular <— Ithe rows of the matrix are not
independent.

Moreover, each row of the matrix is a product t x f where f is a term
and f € F; the linear dependence can be expressed by

ter et Arf =0 or equivalently by grouping terms:

m
Yaifi=0 (5)
i=1

where g; are polynomials in K|[xy, ..., x,|. We say that (g1,...,9m) isa
syzygy. The relation (5) can be rewritten:

J1 fy = 0 modulo Id(ng ey fm) (6)

in other words it is a zero divisor (if g # 0).



Regular sequence I1

A linear system is non singular if one cannot find a non zero linear
combination:

m
D INifi=0with \; e K (7)
i=1

For algebraic systems: it is not possible to avoid non zero relations (5) :

i~ £ =0 ®)

We say that it is a trivial syzygy.



Regular sequence 111

Definition (Regular Sequence

Algebraic definition: the system (fi, ..., f;) of homogeneous polynomi-
alsis regularif forall i = 1,..., mand g such that

glffe<f17"'7fi*1>

then gisalsoin (f,... . fi ).

Geometric definition: the system(fq, ..., f,) of homogeneous polyno-
mials is regular if for all / € {1,..., m}, the dimension of {f;,...,fj)is
n—i.

We say that the sequence (fi, ..., fy) is regular.

The sequence (fi,...,f,) of affine polynomials is regular if the se-
quence (f/',... f1) is regular ( 7 is the highest homogeneous par of
f;).



Regular sequence IV

Remark
Another characterization of regular sequences: there is no relation

Zg,~1‘,-:Owithg,eK[x1,...,xn]
i

except the relations induced by the trivial syzygies f;f; = fif..

Remark

From the geometric definition: there is no regular sequence when m >
n.



Characterizations of Grobner Bases



Characterizations of Grobner Bases

Useful characterizations of Grobner bases.
Definition (i-representation)

Let P = [py,...,px] be a finite subset of K[x1,...,x5], 0 # f €
K[x1,...,xn], and t € T. Assume that there exists (g,...,9x) €
K[x1,...,Xn] such that:

K
f=>9ip;
i—

We say that it is a {—representation of f wrt P if t > LT(g;p;) for all
1 </ < k. We denote by f = Op(t) this property.

We note f = op(t) when there exists ' € T such that ' < tand f =
Op(t).



Characterizations of Grobner Bases

Iff, g are polynomials and , t is a term, P a finite subset of
polynomials, then

= Op(t) g= Op(t) implies f+ g= Op(t)
f=op(t) g=op(t) implies f+g=op(t)
f=0Op(t) ueT implies u f=Op(ut)
f = op(t) ueT  implies uf=op(ut)

If REDUCTION(p, P) = 0 orp P—*> 0 then p = Op(LT(p)).

Easy exercise.




Characterizations of Grobner Bases

When f = Og(LT(f)) we say that f has a standard representation wrg
G.

G is a Grébner basis if and only if Y0 + f € 1d(G), f = Og(LT(f)).

and what happen when

f £ Og(LT(f)) ?



Sum of polynomials
fel=1d(f, -, fn)
By definition:

f=gifi + -+ gmfm



Sum of polynomials

fel=1d(f;, - ,fn)

By definition:
f=gifi + -+ gmfm

Not a unique representation !

g1 hi
+go o
+g3 1
+gafy
+g5f5



Sum of polynomials

fel=1d(f;, - ,fn)

By definition:
f=gifi + -+ gmfm

Not a unique representation !

g1 hi
+go o
+g3 1
+gafy
+g5f5




Sum of polynomials

fel=1d(f, -, fn)
By definition:

f=gifi + -+ gmfm

Not a unique representation !

G
1o\




Characterizations of Grobner Bases

G is a Grobner basis if and only if V0 +# f € 1d(G), f = Og(LT(f)).

Let G be a finite subset of polynomials. If for all g1, g- in G, we have
Spol(g1,92) = 0 or Spol(gy, g2) = 0g(lem(g1, 92)), then G is a Grébner
basis.

We need to proof a lemma first .. .




Proof of the theorem: lemma

Letfi,..., fx be nonzero polynomials in K[xq,..., x| andte T.
Consider f = Op(t) = Zf-‘:1 cix“if;, where c; € K* such that

t =X LT(fy) = - = X% LT(f,).

IfLT(f) < t, then k > 1 and f can be rewritten:

k—1
f o= Y bt Spol(f fur) with by € K. ©)
=1 T

where 7; = lcm(f;, fi1). Furthermore

I T(Spol(f, fuq)) < t, foralli=1,... k—1.
Tj




Characterizations of Grobner Bases

Let G be a finite subset of polynomials . G is a Grébner basis if and
only if Spol(f,g) — 0 for all (f,g) € G?.

Let G be a finite subset of polynomials . G is a Grébner basis if and
only if REDUCTION(Spol(f,g), G) = 0 for all (f,g) € G>.

Let (f,g) € G2, f # g. Put t = LT(Spol(f, g)) < lem(f, 9)

If REDUCTION(Spol(f, g), G) = 0 then from proposition (R) :

Spol(f, g) = Og(LT(Spol(f,g))) = Og(t) = og(lem(f, g))and we can
apply the theorem. O




Buchberger Algorithm
Very simple version of the Buchberger algorithm:

F =[fi,...,fs] alist of polynomials
< admissible ordering
Output: G a finite subset of K[x1, ..., xa].
G:=Fandm:=s
P = {(f,fj) | 1 <i<j< mj} the list of critical pairs
while P # ¢5 do
Select and remove from P a critical pair (f, g)
fm+1 = SpOI(fa g)
fm+1 :=REDUCTION(fpy1, G)
if 7,1 # 0 then

Input:

m:=m+1
P:=Pu{(fifn) | 1<i<mj}
G:= Gu {fn}

return G







The F4 algorithm
Definition

A critical pairs of (f,,f) is a member of T2 x K[xy,...,xy] x T x
K[x1,...,Xn]s
Pair(f;, f;) := (lemy, t;, f;, 4, ;)

such that

lem(Pair(f;, f;)) = lemy = LT(t;f;) = LT(t;f;) = lem(f;, f;)

Definition
We define the degree of the critical pair p;; = Pair(f;, f;), deg(p; ), to be
deg(/lcm; ;). We define the following operators:

Left(p;) :=t - f; et Right(p;;) := t; - f;



Selis a function List(Pairs) — List(Pairs)
such that Sel(l) # g if | # &
Output: un sous ensemble fini de K|[x1, ..., xa].
G:=F,Ff :=F,d:=0 and P := {Pair(f,g) | (f,g) € G® with f = g}
while P # ¢j do

F is a finite subset of K[xq,..., x,]
Input:

d=d+1
Py := Sel(P)
P:= P\Py

Ly := Left(Pd) V) Right(Pd)
F; :=REDUCTION(Ly4, G)
for he Fj do
P := Py {Pair(h,g) | g € G}
G:=Gu{h
return G




We can now extend the definition of reduction of a polynomial modulo
a subset ofK|[xq, ..., x,], to the reduction of a subset of K|[x1,..., x|
modulo another subset of K[x1, ..., xa]:

Input: L, G finite subsets of K[xq, ..., x|
Output: a finite subset of K[x1. ..., x| (could be empty).
F :=SYMBOLICPREPROCESSING(L, G)

F = Gaussian reduction of F wrt <
F+ .= {f e E|LT(f) ¢ LT(F)} /I the “useful” part of F
return F+




No arithmetic operation is used: it is a symbolic preprocessing.

Input: L, G finite subsets of K[x1, ..., x|
Output: a finite subset of K|[x1, ..., xx]
F:=L
Done := LT(F)
while T(F) # Done do
choose m an element of T(F)\Done
Done := Done u {m}
if m top réductible modulo G then
exists g€ Gand m’ € T such that m = m’ - LT(9)
F:=Fou{m. g}
return

The SYMBOLICPREPROCESSING function is very efficient: its
complexity is proportional to the size of the output (if #G is smaller
than the final size of T(F)) [parallel implementation].



For all polynomials p € Ly,we have p E'o

The F, algorithm computes a Grébner basis of G inK[xq, ..., xa]
such that F < G and Id(G) = Id(F).

Remark

If #Sel(/) = 1 for all | # & then the F, algorithm reduces to the Buch-
berger algorithm. In this case the function Sel is the equivalent of the
selection strategy for the Buchberger algorithm.



Selection function

Input: P a list of critical pairs
Output: a list of critical pairs.

d := min {deg(lcm(p)) | p € P}
Py :={pe P | deg(lem(p)) = d}
return Py

We call this strategy the normal strategy for F,.

Hence, if the input polynomials are homogeneous, we obtain in degree
d, a d Grébner basis; Sel selects, in the next step, all the critical pairs
which are needed to compute the Groébner basis in degree d + 1.



Optimisations

e including Buchberger Criteria (or F5 criterion).
e reuse all the rows in the reduced matrices.

(GneWa Pnew) 3:UPDATE(Golda Poia, h)

a finite subset G,y of K[x1, ..., x|

Input: < a finite subset P, of critical pairs in K[xq, ..., x|
0+ heK[xq,...,Xn]

Output: a finite subset in K[xq, ..., x,| an updated

list of critical pairs.




Inout: F cK[x1,...,Xn]
PUE Y sel a function List(Pairs) — List(Pairs)

Output: a finite subset of K|[x1, ..., x,].
G:=gandP:=gandd:=0
while F # 5 do

f:=first(F); F := F\{f}

(G, P) :=UPDATE(G, P, f)

while P # 5 do

d:=d-+1

Py := Sel(P); P := P\Pq4

[Lg o= Left(Pd) U Right(Pd)

(Fg,Fq) :=REDUCTION(Ly, G, (Fj)g1.... (d—1))

for he FN:; do
P:= Py {Pair(h,g) | g € G}
(G, P) :=UPDATE(G, P, h)

return G




F4: step by step

Example (3 quadratic equation in F4q1)
Monomial ordering is DRL and the normal strategy

[ fi = x1° + 66 X1 X2 + 4 X1 X3 + 25 X02 + 41 Xp X3 + 54 X3° + 42 xq
+87 x> + 22 x5 + 86,
fr = X12 + 22 X1 Xo + 38 X1 X3 + 9 X0% + 53 Xo X3 + 6 X532 + 92 xq
+61 X0 + 74 x3 + 49,
fs = x12 + 13 X1 Xo + 86 X1 X3 + 29 X22 + 11 X» X3 + 81 x3° + 98 xq
+67 Xo + 7 x3 + 40

At the beginning G = {fi} and Py = {Pair(f, f3), Pair(f;, f>)} such that
L ={(1,k),(1,%),(1, )}
SYMBOLICPREPROCESSING(L+, G, &):

Fi={f,h, fi} T(F1)={{X2| x1X0, X1 X3, X3, X2X3, X5, X1, X2, X3, 1}

xZ | is already done. All the other monomials are not reducible.




F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f{, f-)} such that
L2 = {(1 ) f3)7 (17 f2)7 (17 f1)}

SYMBOLICPREPROCESSING(Ly, G, J):

Fo={fs,b,fi} T(F2)={x?| xiXo, X1 X3, X3, XoX3, X5, X1, X2, X3, 1}

xZ |is already done. All the other monomials are not reducible.
Matrix representation of F = [f3, f>, f1] is:

X2 XiXo X5 XiXz XoXz X5
fz | 1 13 29 86 11 81
fo | 1 22 26 38 58 6
fi | 1 66 25 4 41 54

A= M(F) =



F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, )} such that
L ={(1,5%),(1,%),(1,f)}.
SYMBOLICPREPROCESSING(Ly, G, F):
Fo={fs,fo,fi} T(F2) = {|x2| X1 X2, X1X3, X3, XoX3, X2, X1, X2, X3, 1}

x¢ |is already done. All the other monomials are not reducible.

X2 XiXo X5 XiX3 XoX3 X2
| O 0 1 28 19 79
fs| 0 1 0 12 2 5
f1 | 1 66 4 25 41 54

Ay =



F4: step by step

Example (3 quadratic equation in F1q1)

At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, f>)} such that

L2 = {(1 s f3)7 (1a f2), (1 3 f1)}
SYMBOLICPREPROCESSING(Ly, G, F):

Fo={f, b, fi} T(F2)={X2| xiX0, X1 X3, X3, X2X3, X5, X1, X2, X3, 1}

>
X

X2 XiXo X5 XiX3 XoXg X2

A fs| O 0 1 28 19 79
2~ /0 1 0 12 2 5
fi | 1 66 4 25 41 54

Polynomial representation of Az

is already done. All the other monomials are not reducible.



F4: step by step

Example (3 quadratic equation in F1q1)
At the beginning G = {fi} and P, = {Pair(f, f3), Pair(f;, f»)} such that

L = {(17f3)7 (17 f2)a (17f1)}

SYMBOLICPREPROCESSING(Ly, G, F):

Fo={f5,o,fi} T(F)={x2

X2 XiXo

~ K]0 0
Az = 510 1
fi | 1 66

2 2
, X1X2, X1 X3, X5, XoX3, X5, X1, X2, X3, 1}

xZ |is already done. All the other monomials are not reducible.

X5 XiX3 XoXz X5
1 28 19 79
0 12 2 5
4 25 41 54

Polynomial representation of Az

fs = X1 Xo + 12 X1 X3 + 2 X0 X3 +55X32 + 66 X1 + 88 xo + 60 x3 + 92,
fo = Xx0° + 28 X1 X3 + 19X X3 + 79 x3° + 30 x4 + 50 X5 + 59 x3 + 46



F4: step by step

Example (3 quadratic equation in F1q1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f3)} such that
Ly ={(x, f1), (x1,85), (X, f5), (X1, T5) }

SYMBOLICPREPROCESSING(L3, G, &):
Fz = {xofi, X115, Xof5, X1 f}

T(F3) = {| x2x2 |,| X1 x2

2
L X3, X1 XoX3, X1 X2, X1 X3, . ..}




F4: step by step

Example (3 quadratic equation in F1q1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f5)} such that
Ly ={(x, f1), (x1,85), (X2, f5), (X1, T5) }

SYMBOLICPREPROCESSING(L3, G, J):
F3 = {xofi, X115, Xof5, X1 f }

T(F3) = {| x2x2 |,| X1 X2

3 2
, X5, X1X2X3, X1X5, X1 X3, - . .}

Xg is divisible by nga — 3 =FuU {ngg}
X1 XoX3 is divisible by x3fs — F3 = F3 U {x3f5}



F4: step by step

Example (3 quadratic equation in F1g1)
In degree 3: P; = {Pair(fy, f5), Pair(f5, f5) } such that
Ly = {(x2, f1), (x1,%5), (X2, f5), (X4, fg) }.

SYMBOLICPREPROCESSING(L3, G, &):
Fs = {xofy, X115, Xof5, X1 16}

2 2| .3 2
T(F3) = {{ X7 X2 |,| X1X5 |, X5, X1 X2X3, X1 X5, X1 X3, . . .}

x3 is divisible by xofy — F3 = F3 U {xofs}
X1X2X3 is divisible by X3f5 — F3 = F3 U {X3f5}

Fz3 = [x2fy, X115, Xo f5, X1 T, X2 fs, X3 f5, X3 T, f5, f, X3 fi, i ]



F4: step by step

Example (3 quadratic equation in F1q4)

Xg is divisible by Xofg —> F3 = F3 U {nge}
X1X2X3 is divisible by X3f5 — F3 = F3 U {X3f5}

F3 =
fs
fs

As=.

Xofs
fio

Xofy
fg

[Xo fy, X1 5, Xo 5, X1 fg, Xo f5, X3 f5, X3 T, 5, fg, X3 1y, ]

1
1 0
1 0

1 66 25

i 0 O

~
O OOk

55

19
2
41
79
55
0
54
0

o o W
foBBoocococo -~

30
66
50
42
88

®© o ® 01 o
cP¥oPTococoPRo-~

28
12

60

50
88
87
0
0
0
46
92
0
86
0

fio = X1 X32 + 23 x3° + 77 X1 X3 + 66 X2 X3 + 84 X532 + 48 X1 + 38 Xo + 44 x3 + 68
fo = X2 Xa2 + 98 x3% + 60 X1 X3 + 34 X2 X3 + 85x3° + 65 X1 + 9xo + 74 X3 + 28



F4: step by step

Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abed — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L =
{(1 ’ f3)7 (ba f4)}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| f=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3,fs)} such that L =
{(1af3)7(b7 f4)}

SYMBOLICPREPROCESSING(L+, G, ):
Fi = {k,bfy} T(F) = {labl,ad, b?, bc, bd, cd}

is already done.



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fr=a+b+c+d

At the beginning G = {fy} and Py = ({Pair(f3,fy)} such that L; =
{(1 ) f3)7 (ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy} T(F)={abl|ad] b?, bc,bd, cd}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3, fz)} such that Ly =
{(1 ) f3)7 (b7 f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {fk,bfy} T(F)={abl|ad] b? bc,bd, cd}

ad is top reducible by f, € G !



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd fr=a+b+c+d

At the beginning G = {fy} and Py = ({Pair(f3,fy)} such that L; =
{(1 ) f3)7 (ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy,diy} T(F;) = {ab],|ad], b2, bc, bd, cd, a?}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(b5 f4)}

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f,bfy,df} T(F) = {{abl.[ad]|b?] be, bd, cd, d?}



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fy=a+b+c+d

At the beginning G = {fz} and Py = {Pair(f3,fs)} such that L =
{(1,5), (b, fa)}.

SYMBOLICPREPROCESSING(L+, G, J):

Fi = {f.bhdfs} T(F) = {{abl[ad][6?] bc,bd, cd, o?}

b? is not reducible by G



Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fy = abcd — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fh=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(ba f4)}

SYMBOLICPREPROCESSING(L+, G, J):
Fy = {f5,bfy,dfy} T(Fy) = {abl|ad

Ira Fa)

bc

bd

cd

) b )




Example (Cyclic 4)
Monomial ordering is DRL and the normal strategy

F_ fi = abed — 1, f, = abc + abd + acd + bcd,
| h=ab+bc+ad+cd,fr=a+b+c+d

At the beginning G = {fz} and Py = {Pair(fs,fs)} such that L; =
{(17f3)7(b7 f4)}

SYMBOLICPREPROCESSING (Ly, G, ¢J ) returns

Fi = [f3, bfy, dfy].















For the next step we have to consider P, = {Pair(fo, f4)}
hence L, = {(1,f), (bc, fs)} and F = {F;}.




Example (Cyclic 4)

L2 = {(1 ) f2)7 (bC7 f4>} et f = {F1}
In SYMBOLICPREPROCESSING we can try to simplify the products 1 - f>
and bc - f, using the previous computations:

For instance LT(bc f;) = abc = LT(c fz) and so instead of bc - f, we can
consider ¢ - fs.



Example (Cyclic 4)
For the next step we have to consider P, = {Pair(f, )}
hence L, = {(1,f), (bc, fs)} and F = {F}.
SYMBOLICPREPROCESSING

Fo = {h,cf} T(F2) = { abc] bc?, abd, acd, bcd, cd?}



Example (Cyclic 4)
For the next step we have to consider P, = {Pair(f, )}
hence L, = {(1,f), (bc, fs)} and F = {F}.
SYMBOLICPREPROCESSING

Fo = {f,cls} T(F2) = {labc

,bc?,

abd

,acd, bed, cd?}




Example (Cyclic 4)
Fi = [fs = ad+bd+cd+d?, f; = ab+bc—bd —d?, f, = b?+2 bd + d?]

For the next step we have to consider P, = {Pair(f, f4)}
hence L, = {(1, %), (bc, fs)} and F = {F1}.
SYMBOLICPREPROCESSING

Fo = {f,cfs} T(Fs) = { abc| bc?,|abd|, acd, bed, cd?}
abd is reducible by bd f; but also by b f5 !




Optimisations

e including Buchberger Criteria (or F5 criterion).

o reuse all the rows in the reduced matrices.

o Improve the linear algebra step (dedicated algorithms, matrix
compression, ...)



F4 generated huge matrices




F4 generated huge matrices
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