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Abstract. This paper presents a practical cryptanalysis of the Identification Scheme proposed by Patarin at Crypto
1996. This scheme relies on the hardness of the Isomorphism of Polynomial with One Secret (IP1S), and enjoys
shorter key than many other schemes based on the hardness of a combinatorial problem (as opposed to number-
theoretic problems). Patarin proposed concrete parameters that havenot been broken faster than exhaustive search
so far. On the theoretical side, IP1S has been shown to be harder than Graph Isomorphism, which makes it an
interesting target. We present two new deterministic algorithms to attack the IP1S problem, and we rigorously
analyze their complexity and success probability. We show that they can solve a (big) constant fraction of all the
instances of degree two in polynomial time. We verified that our algorithms are very efficient in practice. All the
parameters with degree two proposed by Patarin are now broken in a fewseconds. The parameters with degree three
can be broken in less than a CPU-month. The identification scheme is thus quite badly broken.

1 Introduction

Multivariate cryptography is concerned with the use of multivariate polynomials over finite fields to design crypto-
graphic schemes. The use of polynomial systems in cryptography dates back to the mid eighties with the design of
C∗ [32], and many others proposals appeared afterwards [36,37,38,27,46]. The security of multivariate schemes is in
general related to the difficulty of solving random or structured systems of multivariate polynomial equations. This
problem has been proved to be NP-complete [22], and it is conjectured [2] that systems of random polynomials are
hard to solve in practice. As usual when a trapdoor must be embedded in a hard problem, easy instances are trans-
formed into random-looking instances using secret transformations. In multivariate cryptography, it is common to map
an easily-invertible collection of polynomialsa into an apparently random oneb. It is then assumed that, being sup-
posedly indistinguishable from random,b should be hard to solve. The structure-hiding transformation is very often
the composition with linear (or affine) invertible mappingsS andT , namelyb = T ◦ a ◦ S. The matricesS andT are
generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recovering the secret transformationsS andT givena and
b. It is a fundamental problem of multivariate cryptography,since its hardness implies the difficulty of the key-recovery
for various multivariate cryptosystems. Notorious examples include C∗ [32], the traitor tracing scheme proposed by
Billet and Gilbert [8], the SFLASH signature scheme [37], theℓ-IC signature scheme [12], the square-vinegar signature
scheme [1] and the Square encryption scheme [11]3. All these schemes have been broken, because the structure of the
central map was not hidden enough. The corresponding IP problem was then not random, but structured. However,
when no apparent structure exists in botha andb, then the IP problem is fairly difficult. This motivated Patarin to
introduce it as an intractable assumption by itself in [34].So far only exponential algorithms [39,17] are known to
attack the general IP problem.

An important special case of IP is theIP problem with one secret(IP1S for short), whereT is the identity matrix.
Patarin suggested in 1996 [35] to construct a zero-knowledge identification scheme relying on the hardness of IP1S,

3 In the description of some of these schemes, the easily-invertible centralmap contains parameters that are part of the secret-key.
However, in this case there exists an equivalent secret key where these parameters have a fixed value. This is notoriously the case
of C∗.



inspired by the Zero-Knowledge proof system for Graph Isomorphism of [25]. The proposed parameters lead to rel-
atively small key sizes (for instance to secret and public keys of 256 bits each and no additional information), as the
complexity of the problem was believed to be exponential. The proposed parameters have not been broken so far, and
no technique better than exhaustive search is known to attack the scheme. The IP1S problem is also interesting from
a complexity-theoretic point of view. It has been proved in [39] that IP1S isGraph Isomorphism-hard(GI-hard for
short). This leads Patarinet al. to claim that IP1S is unlikely to be solvable in polynomial time, because no polynomial
algorithm is known for GI in spite of more than forty years of research. On the other hand, GI is not known to be
NP-complete. Generating hard instances GI is pretty non-trivial, and there are powerful heuristics as well as expected
linear time algorithms for random graphs [19]. This compromises the use of GI as an identification mechanism, and
was part of the motivation for introducing IP1S as an alternative. Moreover, when used in this context, instances of the
IP problem are random, which presumably avoids all the attacks on the cryptographic schemes mentioned above.

Previous and Related Work. The identification scheme based on IP1S is not based on number-theoretic assumptions,
unlike for instance the well-known Fiat-Shamir protocol [18]. Many other identification schemes are not based on
number theoretic assumptions [42,43,44,41,30]. However,the IP1S-based identification scheme enjoys shorter keys
than most others.

To our knowledge, the first algorithm dedicated to IP1S can befound in Geiselmannet al. [23]. The authors
of [23] remarked that each row of a matrix solution of IP1S verifies an algebraic system of equations. They then
used an exhaustive search to find the solutions of such system. Soon after, this technique has been improved by
Levy-dit-Vehel and Perret [13] who replaced this exhaustive search by a Gröbner basis computation. This still yields
exponential algorithms, and the improvement induced by this replacement is is as significant as the gain obtained when
comparing Gröbner basis and exhaustive search for solving random algebraic systems. It is negligible over small field
(i.e., typically,F2), but significant for instances of IP1S over large fields. However, the complexity of those algorithms
remains exponential by nature.

Finally, Perret [40] shows that the affine and linear variants of IP1S are equivalent,i.e., one can without loss of
generality restrict our attention to the case whereS is linear (as opposed to affine). In addition, a new approach for
solving IP1S using the Jacobian matrix was proposed. The algorithm is polynomial when the numberu of polynomials
in a andb is equal to the number of variablesn. However, whenu < n, the complexity of this approach is not well
understood. Moreover, when the number of polynomials is very small, for instanceu = 2, this algorithm is totally
inefficient.

The main application of IP1S is the identification scheme proposed in [39]. The public key being composed of
two sets ofu polynomials, it is interesting to keep the number of polynomials as small as possible (1 or 2). For such
parameters, the authentication mechanism based on IP1S looks appealing in terms of key size.

All in all, the existing literature on the IP and IP1S problemcan be split in two categories:heuristicalgorithms with
(more or less vaguely) “known” complexity and unknown success probability [39], andrigorousalgorithms that always
succeeds but with unknown complexity [17,40,13,23]. This situation makes it very difficult, if not plainly impossible
to compare these algorithms based on their theoretical features. The class of instances that can be solved by a given
algorithm of the first type is in general not known. Conversely, the class of instances over which an algorithm of the
second type terminates quickly are often not known as well. This lead the authors of IP/IP1S algorithms to measure the
efficiency of their techniques in practice, or even not to measure it at all. Several sets of concrete parameters for IP and
IP1S were proposed by Patarin in [35], and can be used to measure the progress accomplished since their introduction.
The techniques presented in this paper allow to break all these challenges in practice.

Techniques. The algorithms presented here are deterministic, and rely on the two weapons that have dealt a severe
blow to multivariate cryptography: linear algebra and Gröbner bases. Our ideas borrow to the recent differential crypt-
analysis of multivariate schemes. While the algorithms are not very complicated, analyzing their running time is fairly
non-trivial, and requires the invocation of not-so-well-known results about linear algebra (such as the dimension of
the commutant of a matrix, or the properties of the product oftwo skew-symmetric matrices), as well as known results
about random matrices, most notably the distribution of therank and the probability of being cyclic. The two most
delicate steps of the analysis involve lower-bounding the dimension of the kernel of a homogeneous system of matrix
equations, and upper-bounding the degree of polynomials manipulated by a Gröbner-basis algorithm.



Our Results. We present two new “rigorous” and deterministic algorithms. On the practical side, these algorithms
are efficient: random quadratic IP1S instances and random cubic inhomogeneous IP1S instances can be broken in
time O

(
n6
)

for any size of the parameters. In particular, all the quadratic IP1S challenges proposed by Patarin are
now broken in a few seconds. The biggest cubic IP1S challengecan be broken in less than 1 CPU-month. The IP1S
identification scheme is thus broken beyond repair in the quadratic case. In the case of cubic IP1S, our attack runs in
timeO

(
n6 × qn

)
, and the security parameter have to be seriously reconsidered, which makes the scheme much less

attractive, since the key size is cubic inn.
A rigorous analysis of our algorithms is both necessary and tricky. When generating linear equations, special care

has to be taken to count how many of them are independent. The recent history of algebraic cryptanalysis taught us
that failure to do so may have drastic consequences. Additionally, the complexity of Gröbner bases computation, even
though a bit more well-understood now in the generic case, isstill often a delicate matter for structured systems.

A unique and distinctive feature of our algorithms comparedto the previous state of affairs, and one of our main
theoretical contribution, is that we characterize the class of instances that can be solved by our techniques in polynomial
time. We show, for instance, that a (big) constant fraction of all quadratic IP1S instances can be solved in polynomial
time.

Organisation of the paper. In section 2, we recall some useful facts about the IP1S problem. Then, in section 3, we
introduce the identification scheme based on the hardness ofIP1S and compare it to other non-number theoretic based
ID schemes. We then introduce our algorithms to break IP1S inthe quadratic case in section 4, and in the cubic case
in section 5.

2 The IP1S Problem

We recall the definition of the IP1S problem. Given two families of polynomialsa andb in Fq[x1, . . . , xn]
u the task

is to find an invertible matrixS ∈ GLn (Fq) and a vectorc ∈ (Fq)
n such that:

b(x) = a(S · x+ c). (1)

We will denote byf (k) the homogeneous component of degreek of f , and by extensiona(k) denotes the vector of
polynomials obtained by taking the homogeneous componentsof degreek of all the coordinates ofa. We define the
derivative ofa in c to be the function∂a

∂c
: x 7→ a(x + c) + a(x). The following lemma is very useful, and is at the

heart of the techniques proposed in [17].

Lemma 1. i) For all k ≥ 1, we have:

b(k) =

(
a+

∂a

∂c

)(k)

◦ S.

ii) If d is the degree ofa andb, thenb(d) = a(d) ◦ S.
iii) S transforms the set of common zeroes ofa into the set of common zeroes ofb.

Proof. Let us writeT (x) = Tℓ · x+ Tc andS(x) = Sℓ · x+ Sc whereTℓ andSℓ aren× n matrices, whereasSc and
Tc are vectors of(Fq)

n. We have:

b(x) = Tc + Tℓ · a(Sℓ · x+ Sc)

= Tc + Tℓ ·
(
Da(Sℓ · x, Sc) + a(Sℓ · x) + a(Sc)− a(0)

)

=
[
Tc + Tℓ ·

(
a (Sc)− a(0)

)]
+

(
Tℓ ◦

∂a

∂Sc

◦ Sℓ

)
(x) + (Tℓ ◦ a ◦ Sℓ) (x)

The first statement follows from the application of [17, lemma 4] to the last equality. The second and third state-
ments are direct consequences of the first one. ⊓⊔



A useful consequence of lemma 1 is that without loss of generality we may assumec to be the null vector4. A con-
sequence of pointii) is that from any instance of the problem we can deduce alinear homogeneousinstance by
considering only the homogeneous component of highest degree. If this instance can be solved, andS can be re-
trieved, then recoveringc is not difficult, using a slight generalization of the idea shown in [24]. If S is known, then
∂a
∂c

can be explicitly computed, andc can usually be deduced therefrom. For instance, focusing onthe homogeneous
component of degree one yields a system ofu · n linear equations inn variables that admitsc as a solution. In most
cases, it will in fact admitonly c as a solution, which enables recoveringc.

It was pointed out in [39] that if there is only one quadratic polynomial, then the problem is easily solved in polyno-
mial time. This follows from the fact that quadratic forms admit a canonical representation (see for instance [29]). The
change of coordinate can be then easily computed. We will therefore focus on the case ofu ≥ 2 when the polynomials
are quadratic.

For various reasons, the IP1S problem becomeseasierwhenu is close ton, andharder whenu is small. For
instance, the algorithm given in [40] deals with the caseu = n in polynomial time, but cannot tackle the case where
u = 2 andn is big, which prevented it from breaking the parameters proposed by Patarin. Additionally, small values of
u leads to smaller public keys. Therefore, we will restrict our attention to the case whereu = 2 when the polynomials
are quadratic, and whereu = 1 when they are cubic. These are the most cryptographically relevant cases, and the
most challenging. We will also consider the case whereFq is a field of characteristic two. It can be shown that this
makes the problem a bit harder, but again this is the most cryptographically relevant case. The quadratic and cubic
IP1S problems are very different and lead to specific approaches, therefore we will discuss them separately.

3 Patarin’s IP1S-Based identification Scheme

Zero-Knowledge proofs were introduced in 1985 by Goldwasser, Micali and Rackoff in [26]. Soon afterwards, Fiat
and Shamir [18] used the hardness of quadratic residuosity to build an efficient identification scheme. Many other
identification schemes appeard afterwards, all relying on the hardness of number-theoretic assumptions. Some cryp-
tographers took a different line of research, and tried to design identification scheme from different computational
assumptions, not relying on number theory, but instead on the NP-hardness of some specific combinatorial problems.

One of the very-first combinatorial identification scheme was proposed by Shamir [42], and relied on the hardness
of the Permuted Kernel Problem(PKP). Later on, Stern proposed in [43] a scheme based on the intractability of
Syndrome Decoding(SD), and in [44] a scheme based on the intractability ofConstrained Linear Equations(CLE).
Finally, Pointcheval [41] proposed a scheme related to the hardness of thePerceptron Problem, originating from the
area of learning theory. All these problems are NP-complete(as opposed to IP1S). The designers proposed practical
parameters, aiming for a security level of264 or more, which are summarized in table 1. In all these schemes, it is
required that all users share a public common set of information, a “common setting”, usually describing the instance of
the hard problem. For instance, in number-theoretic problems, the description of the curve, or of the group over which
a discrete logarithm problem is considered is a common public information. While this information is not a “key”
stricto sensu, it must nevertheless be stored by the prover and by the verifier, leading to higher memory requirements.
However, in some case it can be chosen randomly, or generatedonline from a small seed using a PRNG.

Scheme Common SettingPublic KeySecret Key

PKP
2048 256 374
7992 512 808

SD
131 072 256 512
524 288 512 1024

CLE
3600 80 80
3600 96 96

Perceptron 10807 144 117

IP1S 0 256 272

Table 1.Practical parameters proposed in [42,43,44,41,35] in order to obtain a security level of roughly264.

4 this was already observed in [40].



Challenge n q DegreePolynomial(s)Public KeyPrivate Key

A 16 2 2 2 272 bits 256 bits
B 16 2 3 1 816 bits 256 bits
C 6 16 2 2 168 bits 144 bits
D 6 16 3 1 224 bits 144 bits
E 32 2 2 2 1056 bits 1024 bits

Table 2.Concrete parameters for IP1S. Patarin proposed challengesA,B,C and D in [35]. We introduce challenge E.

On the contrary, the IP1S-based identification scheme proposed by Patarin in [34,35] does not need the prover
and the verifier to share additional information (except maybe the description of the finite field, which is very small).
It works very similarly to the original identification scheme based on a zero-knowledge proof system for Graph-
Isomorphism (GI) by Goldreich, Micali and Wigderson [25]. One of the reasons for replacing GI by IP1S is the
existence of efficient heuristic algorithms for GI, capableof solving efficiently random instances. The generation of
hard instances of GI is a delicate matter [19]. Replacing theGI problem by IP1S yields shorted key, and random
instances of IP1S werea priori secure. Patarin proposed concrete parameters, which are shown in table. 2. The PKP
and SD schemes lead to bigger keys than IP1S, while the Perceptron scheme leads to comparable key-sizes, and CLE
yields smaller keys than IP1S, if we neglect the additional memory requirement imposed by the common setting.

These IP1S challenges cannot be attacked using the existingtechniques [17,23,40]. So the best attack remains
exhaustively searching for the secret key. As a final note, let us mention that Lyubashevsky recently proposed in [30]
to build an identification scheme using the hardness of lattice problems, but did not propose concrete parameters.

4 Cryptanalysis of Quadratic IP1S

The main observation underlying our quadratic IP1S algorithm is that bydifferentiatingequation (1), it is possible to
collect linear equations between the coefficients ofS and those ofS−1.

We denote byDf : (Fq)
n
× (Fq)

n
→ Fq

u thedifferentialof a functionf : Fn
q → F

u
q . Df is defined by:

Df(x,y) = f(x+ y)− f(x)− f(y) + f(0)

It is easy to see thatDf(x,y) = Df(y,x). If f is a polynomial of total degreed, thenDf is a polynomial of total
degreed, but of degreed− 1 in x andy. Thus, whenf is quadratic, thenDf is a symmetricbilinear mapping.

Going back to the quadratic IP1S problem, for all vectorsx,y ∈ (Fq)
n, we have:

∀x,y ∈ (Fq)
n
, Db(x,y) = Da (S · x, S · y) .

Using the change of variabley′ = S · y, this equation becomes:

∀x,y′ ∈ (Fq)
n
, Db(x, S−1 · y′) = Da(S · x,y′). (2)

Sincea andb are of total degree 2, thenDa andDb arebilinear (symmetric) mappings. In this case, since equation (2)
is valid for allx andy, then in particular it is valid on a basis of(Fq)

n
× (Fq)

n, and substituting fixed basis vectors
for x andy yields linear equationsbetween the coefficients ofS and those ofS−1.

This idea for obtaining linear equations can also be described relatively simply using the usual theory of quadratic
forms (with the tweaks required by the fact that we are working in characteristic two). IfFq is a field of even char-
acteristic, then the set of homogeneous quadratic polynomials inn variables overFq is in one-to-one correspondance
with the set of symmetric matrices with zero diagonal. LetP (ak) denote the matrix of the symmetric bilinear form
associated withak (it is related to thepolar formof ak in odd characteristic). Recall that the coefficient of index(i, j)
of P (ak) is Dak (ei, ej), where(ei)1≤i≤n is a basis of(Fq)

n. We then have:

S :





S−1 · P (b1) = P (a1) ·
tS

...
S−1 · P (bu) = P (au) ·

tS

(3)



Each one of theseu matrix equations yieldsn2 linear homogeneous equations between the2n2 coefficients ofS
and those ofS−1. These lastu ·n2 homogeneous linear equations cannot be linearly independent as they admit a non-
trivial solution

(
S−1, S

)
. The kernel ofS is thus non-trivial, and our hope would be that it describesonlyone solution.

Whenu is strictly greater than two, we then have much more linear equations than unknowns, and we empirically find
only one solution (when the polynomials are randomly chosen). Whenu = 2, which is again the most relevant case,
the situation is unfortunately not as nice; Theorem 1 below shows that the kernel ofS is of dimension higher thatn
– in fact, we will show below that it is of dimension at least2n. This means that solving the linear equations cannot
by itself reveal the solution of the IP1S problem, becauseS admits at leastq2n solutions, out of which only very few
are actual solutions of the IP1S instance5. However, the linear equations collected this way can be used to simplify the
resolution of the IP1S problem.

When looking at one coordinate of (1), we have an equality between two multivariate polynomials that holds for
any value of the variables. Therefore the coefficients of thetwo polynomials can be identified (this is essentially the
algorithm presented in [17]). This yields a systemSquad of u · n2/2 quadratic equations inn2 unknown overFq. With
u = 2, this precisely givesn2 equations inn2 unknown, which cannot be solved by any existing techniques faster than
exhaustive search.

However, we now know thatS lives in the kernel ofS, and thereforeS can be written as the sum ofk = dimkerS
matrices that can be easily computed using standard linear algebra. Identifying coefficients in (1) then yields a system
Squad of u · n2/2 quadratic equations ink unknown. Our hope is thatk is small enough for the system to be very
overdefined, so that computing a Gröbner basis ofSquad is polynomial in theory, and feasible in practice.

The analysis of the attack then proceeds in two steps:

1. Estimate the rank ofS (i.e., the value ofk).
2. Estimate the complexity of the Gröbner basis computation.

For the sake of simplicity, we will analyze the attack algorithm under some assumptions on the input system. For
instance, we will assume that thatn is even, and that one of the two quadratic forms we are dealingwith is non-
degenerate. We will then argue that a random instance satisfies this assumption with high probability, but we are well
aware that some structured instance may not. This is in fact quite logical, because a worst-case polynomial algorithm
for IP1S would imply a worst-case polynomial for Graph-Isomorphism (a fact that would be quite surprising). The
situation of the IP1S problem is in this respect quite similar to that of GI: heuristics are capable of dealing efficiently
with the random case, while some very special instances makethem fail (interestingly, hard instances for GI are
transformed into hard instances for IP1S through the reduction). Lastly, we mention that our algorithm does not
necessarily fail on an instance that does not meet our assumptions. However, we no longer have a guarantee on its
running time. Random instances fail to meet the assumption with a small probability, but we empirically observed that
the algorithm solves them in reasonable time as well.

4.1 Counting Linearly Independent Equations

Obtaining guarantees on the number of linearly independentequations inS is the most important and the most
delicate part of the attack. SincedimkerS is a function of the instance, it makes sense to consider the random variable
giving dimkerS assuming the instance was randomly chosen. Fig. 1 above shows its (experimentally observed) dis-
tribution for various sizes of the base field. We immediatelysee that in odd characteristic,dimkerS is oftenn, while
in characteristic two it is often2n. In the sequel we provide mathematical arguments to back this observation up. We
will focus on the (harder) case of fields of characteristic two, since this is the more cryptographically relevant case.

Our results are expressed in terms of thesimilarity invariantsP1, . . . , Ps of a matrixM . Their product is the
characteristic polynomial ofM , Ps is the minimal polynomial ofM , andPi dividesPi+1. The main technical result
needed to understand the rank ofS is the following theorem.

Theorem 1. LetA1, A2, B1, B2 be four given matrices of sizen× n with coefficients inFq. Let us consider the set of
all pairs (X,Y ) of n× n matrices satisfying the following linear equations:

S :

{
B1 = X ·A1 · Y
B2 = X ·A2 · Y

Let us assume thatS admits at least one solution(X0, Y0) with bothX0 and Y0 invertible, and thatA1 is also
invertible.

5 We note that this contradicts the hope expressed in section 9 of [39]
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Fig. 1: Experimental distribution ofdimkerS.

i) There is a vector-space isomorphism between the kernel ofS and the commutant ofC = A2 ·A
−1
1 .

ii) n ≤ dimkerS.
iii) LetP1, . . . , Ps be the similarity invariants ofC. Then:

dimkerS =

s∑

j=1

(2s− 2j + 1) · degPj

Proof. Because a solution ofS exists, thenB1 is invertible. Thanks to this, we can write:

S :

{
Y = A−1

1 ·X−1 ·B1

B2 ·B
−1
1 ·X = X ·A2 ·A

−1
1

Using the particular solutionX0 then gives:

S :

{
Y = A−1

1 ·X−1 ·B1

C ·
(
X−1

0 ·X
)
=
(
X−1

0 ·X
)
· C

From there, it is not difficult to see that the kernel ofS is in one-to-one correspondance with the commutant of
C, the isomorphism being(X,Y ) 7→ X−1

0 · X. The second point of the theorem follows from the well-knownfact
thatn lower-bounds the dimension of the commutant of any endomorphism on a vector space of dimensionn (see
for instance [7, Fact 2.18.9]). The third point follows froma general result on the dimension of the commutant [20,
chapter 6, exercise 32]. ⊓⊔

Theorem 1 directly applies to our study of the rank ofS with Ai = P (ai) andBi = P (bi). However, it holds only
if P (a1) or P (a2) is invertible (we may swap them if we wish, or even take a linear combination). Note that since
P (a1) is a random skew-symmetric matrix, it cannot be invertible if n is odd, and the analysis is more complicated
in that case. This is why we focus on the case wheren is even, and where one of the two quadratic forms is non-
degenerate. The following lemma gives us the probability thatP (ai) (orP (bi)) is invertible.

Lemma 2 ([31], theorem 3).LetN0(n, r) denote the number of symmetric matrices of sizen× n overFq with zeros
on the diagonal and of rankr.

N0(n, 2s) =
s∏

i=1

q2i−2

q2i − 1
·
2s−1∏

i=1

(
qn−i − 1

)

N0(n, 2s+ 1) = 0



If n is even, the probability thatP (a1) is invertible ifq = 2 is about0.419 (this probability increases exponentially
with q). The probability that eitherP (a1) orP (a2) is invertible is then about0.662 whenq = 2.

Theorem 1 is then applicable in more than half of the cases when q = 2 (and we expect this proportion to grow
very quickly withq). When it is applicable, what guarantee does it exactly offer? We would need to know something
about the similarity invariants ofC. An easy case would be when the minimal and characteristic polynomials are the
same (then there is only one invariant factor, and it is precisely the characteristic polynomial). Then Theorem 1 tells us
that the dimension ofkerS is n. For random matrices, the probability of this event is givenby the following lemma.

Lemma 3 ([21], theorem 1).Let c(n, q) be the proportion of cyclicn × n matrices (i.e., matrices for which the
minimal polynomial is of degreen). We have:

1

q2(q + 1)
< 1− c(n, q) <

1

(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞

c(n, q) =
q5 − 1

q2(q − 1)(q2 − 1)
·

∞∏

i=1

(
1−

1

qi

)

For random matrices overF2, and forn big enough, the proportion of cyclic matrices approaches0.746. Un-
fortunately,C is hardly a random matrix. In odd characteristic it is the product of two symmetric matrices, while in
characteristic two it is the product of two symmetric matrices with null diagonal. The product of two such matrices is
very far from being random, and it is in factnevercyclic, as the following result shows.

Theorem 2 ([6]).LetM be a non-singular matrix of even dimension. Then the two following conditions are equiva-
lent:

i) M can be written as the product of two symmetric matrices with null-diagonal.
ii) M has an even number of similarity invariantsP1, . . . P2ℓ, andP2i+1 = P2i+2.

Corollary 1. If n is even andC is invertible, thenkerS has dimension at least2n.

Proof. By theorem 2,C has at least two invariants, both equal to the minimal polynomial of C (which thus happens to
be of degreen/2). Then theorem 1, pointiii) shows thatkerS has dimension2n. If C has more invariants,kerS can
only be of higher dimension. ⊓⊔

Corollary 1 shows that with a constant probability (when thetwo quadratic forms are non-degenerate)dimkerS
is greater than2n, which sounds like bad news. WhenC is not invertible, theorem 2 no longer holds (there are counter-
examples), but what does apparently still hold is the fact that the minimal polynomial ofC has degree at mostn/2, and
this would be sufficient to show that in all casesdimkerS ≥ 2n, in accordance with Fig. 1.

What we would in fact need to know is the probability thatkerS is exactly of dimension2n. Theorem 1 still
connects this dimension to the similarity invariants ofC, even thoughC is not a uniformly random matrix. It seems
plausible thatC is unlikely to have a very high number of similarity invariants, and that the most common situation
is that it has only two invariants (twice the minimal polynomial). We could not compute explicitly this probability,
and we could not find ways to obtain it in the available literature. We measured it experimentally and found0.746
(after105 trials) whenq = 2. This is strikingly close to the result brought by lemma 3 in the random case. Under the
conjecture thatC has two invariant factors with this probability, then theorem 1 tells us that in about75% of the cases,
dimkerS = 2n. The empirical probability seems to be even higher, as shownby Fig 1.

4.2 Solving Very Overdefined Quadratic Systems

The solution of the IP1S instance (1) is systematically the solution of a systemSquad of n2 quadratic equations. In
the previous section, we argued that we can reduce this system ton2 equations in2n unknowns with high probability,
and (much) more unknowns with negligible probability. The system is so overdefined that it can almost be resolved
by linearization. Indeed, it hasN2/4 equations inN unknowns. In practice, computing a Gröbner basis of the ideal
generated bySquad terminates very quickly, and allows to recover the actual solutions of the problem.



This last fact can be theoretically justified. It is well-known that Gröbner basis algorithms [15,16] are more efficient
on overdefined systems. The complexity of most algorithms strongly depend on a parameter of the ideal called the
degree of regularity. Indeed, the cost of computing a Gröbner basis is polynomialin the degree of regularityDreg

of the system when the ideal has dimension zero,i.e., when the number of solutions is finite. The computation of a
Gröbner basis essentially amounts to solve a system ofM sparse linear equations inM variables, whereM is the
number of monomials of degreeDreg in N variables. The complexity of this process is roughlyO

(
N3·Dreg

)
, with

2 < ω ≤ 3 the linear algebra constant, andN the number of variables of ideal considered (in our case,N = 2n).

The behavior of the degree of regularity is well understood for “random” systems of equations [3,4,5] (i.e., regular
or semi-regularsystems). It is conjectured that the proportion of semi-regular systems onN variables goes to 1 when
N goes to+∞. Therefore, we can assume that for largeN a random system is almost surely semi-regular. This is to
some extent a worst-case assumption, as it usually means that our system is not easier to solve than the others. The
coefficients of the Hilbert series associated with the idealgenerated by a semi-regular sequence ofm equations inN
variables coincide with those of the series expansion of thefunctionf(z) =

(
1− z2

)m
/(1− z)N , up to the degree of

regularity. The degree of regularity is the smallest degreed such that the coefficient of degreed in the series expansion
of f(z) is not strictly positive. This property enables an explicitcomputation of the degree of regularity for given
values ofm andN .

Furthermore, the available literature readily provide asymptotic estimates of the degree of regularity for semi-
generic ideals ofN + k orα ·N equations inN variables, but unfortunately not for the case ofα ·N2 in N variables,
which is the situation we are facing here. We thus tabulated in table. 3 the degree of regularity for semi-regular systems
of equations having the same number of equations and unknowns as those occurring in our attack. From this table,
we conclude that for any reasonable value of the parameters,the degree of regularity will be 3, and thus computing
a Gröbner basis ofSquad should have complexity at mostO

(
n9
)
. In practice, the maximal degree reached by the F4

algorithm on our equations is two, which is even better.

n 2 3 4 5 6 7 8 . . . 16 . . . 32
N 4 6 8 10 12 14 16 . . . 32 . . . 64
m 4 9 16 25 36 49 64 . . . 256 . . . 1024

Dreg 5 4 3 3 3 3 3 . . . 3 . . . 3

Table 3.Degree of regularity of random with the same parameters as those occuring in our attack.

4.3 Implementation

We demonstrated that the algorithm described in this section terminates in timeO
(
n6
)

on a constant fraction of
the instances. This reasoning is backed up by empirical evidence: we implemented the algorithm using the computer
algebra system MAGMA [9]. Solving the equations ofSquad is achieved by first computing a Gröbner basis of these
equations for the Graded-Reverse Lexicographic order using the F4 algorithm [15], and then converting it to the
Lexicographic order using the FGLM algorithm [14]. This implementation breaks the random instances of IP1S in
very practical time. For instance, Challenges A and C are solved in a few seconds. Challenge E takes a few minutes,
but the dominating part in the execution of the algorithm is in fact the symbolic manipulation of polynomials required
to write down the equations ofSquad. Actually solving the resulting quadratic equations turnsout to be easier than
generating them. We never generated a random instance that we could not solve with our technique, for any choice of
the parameters.

There are only public parameter sets, and no public challenges to break, so we unfortunately cannot provide the
solution of an open challenge to prove that our algorithm works. However, the source code of our implementation is
available on the webpage of the first author.



5 Cryptanalysis of Cubic IP1S

In this section, we focus on the case wherea andb are composed of a single cubic polynomial. We assume thata and
b are given explicitly, i.e.:

a =

n∑

i=1

n∑

j=i

n∑

k=j

Ai,j,k · xixjxk, b =

n∑

i=1

n∑

j=i

n∑

k=j

Bi,j,k · xixjxk.

As already explained, we can restrict our attention to the homogenous case. The techniques developed previously for
the quadratic case cannot directly applied in this setting.Indeed, the differential is no longer a bilinear mapping, and
then there is no obvious linear equations between the coefficients of a solution and those of its inverse. However,
we can combine the use of the differential together with the Gröbner basis approach proposed in [17]. We denote by
S0 = {s0i,j}1≤i,j≤n a particular solution of IP1S betweena andb, i.e., it holds thatb = a ◦ S0. For all vectors
x,y ∈ (Fq)

n, we have:
Da(S0 · x,y) = Db(x, S−1

0 · y).

a andb being of total degree3, the coefficients ofS0 andS−1
0 appear with degree two in the expression ofDa and

Db above. LetR be the ringK[s1,1, . . . , sn,n, u1,1, . . . , un,n]. We consider the algebraAs of all n× n matrices over
R. Let S = {si,j} andU = {ui,j} in As be symbolic matrices. We denote byIa,b the ideal generated by all the
coefficients inR of the equations:

Da(S · x,y)−Db(x, U · y) = 0, U · S − 1n = 0n, S · U − 1n = 0n.

It is easy to see thatU = S−1
0 andS = S0 is particular solution of this system, and also a solution ofIP1S betweenb

anda. Our goal is to provide an upper bound on the maximum degree reached during a Gröbner basis computation of
Ia,b.

We prove here thatDreg = 2 for Ia,b under the hypothesis that we know one row of a particular solution S0, i.e.,

we assume then that we know the following idealJ =
〈
s1,j − s

(0)
1,j | j = 1, . . . , n

〉
.

Theorem 3. The degree of regularity ofIa,b + J is 2. Therefore, computing a Gröbner basis of this ideal takes time
O
(
n6
)
.

Proof. We use the fact that the degree of regularity of an ideal is generically left invariant by any linear change
of the variables or generators [28]. In particular, we consider the idealI ′

a,b generated by all the coefficients in
K[x1, . . . , xn, y1, . . . , yn] of the equations:

Da(S0(S + In)x,y)−Db(x, (U + In)S
−1
0 y) = 0, U · S = 0n, S · U = 0n.

It is clear thatI ′
a,b is obtained fromIa,b by replacingS (resp.U ) by S0(In + S) (resp.(U + In)S

−1
0 ). Thus, the

degree of regularity ofI ′
a,b andIa,b are equal. Using the same transformation, the idealJ becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

We now estimate the degree of regularity of the idealI ′
a,b +J ′. For a reason which will become clear in the sequel, it

is more convenient to work withI ′
a,b +J ′. In what follows,F will denote the generators ofI ′

a,b +J ′. We will show
that many new linear equations appear when considering equations of degree2. To formalize this, we introduce some
definitions related to the F4 algorithm [16]. In particular, we will denote byId,k the linear space generated during the
k-th step of F4 when considering polynomials of degreed.

Definition 1. We have the following recursive definition ofId,k:

Id,0(F ) = VectK (F )

Id,1(F ) = VectK (si,jf | 1 6 i, j 6 n andf ∈ Id,0(F ))

+VectK (ui,jf | 1 6 i, j 6 n andf ∈ Id,0(F ))

Id,k(F ) = VectK (si,jf | 1 6 i, j 6 n andf ∈ Id,k−1(F ) and deg(f) ≤ d− 1)

+VectK (ui,jf | 1 6 i, j 6 n andf ∈ Id,k−1(F ) and deg(f) ≤ d− 1) .



Roughly speaking, the indexk is the number of steps in theF4/F5 [16] algorithm to compute an elementf ∈ Id,k(F ).
We show thatI2,1(F ) contains exactlyn2+2n linear equations. This means that we have already many linear equations
generated during the first step of a Gröbner basis computation of F .

Lemma 4. I2,1(F ) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (4)

Proof. From the first row of the following zero matrixS · U we obtain the following equations:




s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · ·+ s1,n un,1 = 0,

s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · ·+ s1,n un,2 = 0,

s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · ·+ s1,n un,3 = 0,

· · ·

s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · ·+ s1,n un,n = 0

Using the equationss1,j = 0 from the idealJ ′, we obtain thenu1,1 = 0, u1,2 = 0, . . . , u1,n = 0. ⊓⊔

We can also predict the existence of other linear equations in I2,1(F ).

Lemma 5. For all (i, j) ∈ {1, . . . , n}2 the coefficient ofy1yixj in Da(S0(S + In)x,y)−Db(x, (U + In)S
−1
0 y) is

a non zero6 linear equation modulo the equations of the idealJ ′ and (4). Among these equations, there aren which
depend only of the variables{sk,ℓ | 1 ≤ k, ℓ ≤ n}.

Proof. We consider the coefficient of the monomialm = y1yixj in the expression

∆ = ∆a −∆b = Da(S0(S + In)x,y)−Db(x, (U + In)S
−1
0 y).

Since the monomialm is linear inxj it is clear that the corresponding coefficient in∆a = Da(S0(S + In)x,y) is
also linear in the variablessi,j ; moreover this coefficient is non zero. We have now to consider the coefficient ofm in
∆b. SinceDb(x,y) is the differential of an homogenous polynomial of degree3 we can always write:

Db(x,y) =

n∑

i=1

n∑

j=i

ℓi,j(y1, . . . , yn)xixj +

n∑

i=1

qi(y1, . . . , yn)xi (5)

whereℓi,j (resp.qi) is a polynomial of degree1 (resp.2). Consequently, the coefficient ofm in Db is also the
coefficient ofy1yi in qj((U + In)S

−1
0 y). That is to say, inqj(y) we have now to replacey = (y1, . . . , yn) by

((U + In)S
−1
0 y). Thus, modulo the equations of the idealJ ′ and (4), we can write the product((U + In)S

−1
0 y) as

=




y1
...
...
yn







1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · ·
...

un,1 · · · · · · un,n







∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




=




y1
...
...
yn







∗ ∗ ∗ ∗
(∗u2,1 + · · ·+ ∗u2,n) · · · · · · (∗u2,1 + · · ·+ ∗u2,n)

... · · · · · ·
...

(∗un,1 + · · ·+ ∗un,n) · · · · · · (∗u2,1 + · · ·+ ∗un,n)




=




∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

...
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn




Hence the coefficient ofy1yi in qj((U + In)S
−1
0 y) is linear in the variablesuk,l wheni 6= 1 and the coefficient ofy21

is a constant. ⊓⊔
6 more precisely, generically non zero.



To summarize:

Lemma 6. I2,1(F ) contains exactlyn2 + 2n linear equations.

Proof. In I2,1(F ), we haven linear equations from lemma 5,n linear equations from the very definition ofJ ′, and
n2 linear equations from lemma 5 ⊓⊔

As explained before, we obtainn2 +2n linear equations forI2,1(F ). However, we have2n2 variables. So, we have to
considerI2,2(F ), i.e., the equations generated at degree2 during the second step. Thanks to lemma 6, we can reduce
the original system to a quadratic system in2n2−(2n+n2) = (n−1)2 variables. W.l.o.g we can assume that we keep
only the variableui,j where2 ≤ i, j ≤ n. LetF ′ be the system obtained fromF after substituting the2n+ n2 linear
equations of lemma 6. All the monomials inK[x1, . . . , xn, y1, . . . , yn] of Da(S0(S+In)x,y)−Db(x, (U+In)S

−1
0 y)

have the following shape:
xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is2nn(n+1)
2 = n2(n+ 1) ≈ n3, which implies that the number of equations in

F ′ is alson3.
Thanks to this remark, we will now prove that we can linearizeF ′. LetT (F ′) be the set of all monomials occurring

in F ′. We can assume thatT (G′) = [t1 < t2 < · · · < tN ]. It is important to remark thatt1 = u2,2 up tot(n−1)2 = un,n

are in fact variables. Now, letM be the matrix representation ofG′ w.r.t. T (G′). Since we know precisely the shape
of the equations from the proof of lemma 5, it is possible to establish that:

1. most of the equations are very sparse, namely each equation contains aboutn2 non-zero terms.
2. all the variablest1, . . . , t(n−1)2 occur inall the equations

After a Gaussian elimination of the matrixM , we obtain the following shape:

M̃ =




1(n−1)2 0 0 0
0 × · · · · · ·

0 ×
. . .

...

0 × · · ·
. ..




Hence, we obtain after a second step of computation in degree2 the equationsu2,2 = · · · = un,n = 0. This means
that after2 steps of computation at degree2, we obtain(n− 1)2 + 2n+ n2 = 2n2 linear equations in2n2 unknowns.
This explains why the maximum degree reached during the Gröbner basis computation ofI ′

a,b + J ′ is bounded by2,
and concludes the proof of theorem 3. ⊓⊔

5.1 Application to the Linear Inhomogeneous Case

If c = 0 in equation (1), and ifa has a non-trivial homogeneous component of degree 1, then looking at the homo-
geneous component of degree one yields the image ofS on one point. We are then in a situation where theorem 3 is
applicable, andS can be determined though a Gröbner basis computation which terminates in timeO

(
n6
)
.

5.2 Implementation and Application to the Other Cases

All the other cases reduce to the linear homogeneous case, asmentioned in section 2. In this setting, the problem is
that we do not have enough knowledge onS to make the Gröbner basis computation efficient. A simple idea would
be to guess a column ofS then compute the Gröbner basis. This approach has complexity O

(
n6 · qn

)
as explained

before. It is possible to reduce this complexity by a factor of q, by discarding guesses for the column ofS that yields
different values ofa andb on the corresponding points.

The biggest proposed cubic IP1S challenge (Challenge C in fig. 2) hasu = 1, n = 16 andq = 2. Given one
relation onS, the computation of the Gröbner basis takes 90 seconds on a 2.8Ghz Xeon computer using the publicly
available implementation of F4 in MAGMA. Since this has to be repeated215 times, the whole process takes about
one CPU-month (and can be parallelized at will). For challenge D, the Gröbner basis is computed in 0.1 second, and
the whole process takes about 2 hours.



5.3 An Interesting Failure

We conclude this section with a simple idea that could have lead to an improvement, by efficiently giving a relation on
S, but which fails in an interesting manner. Let us denote byZa (resp.Zb) the set of zeroes ofa (resp.b). Because of
lemma 1, and sinceS is linear, we have:

S

(
∑

x∈Za

x

)
=
∑

y∈Zb

y

This yields a relation onS, which is enough to use theorem 3.a andb may be assumed to have aboutqn−1 zeroes.
Finding them requires timeO (qn). The complexity of the attack could thus be improved toO

(
n6 + qn

)
. Surprisingly,

this trick fails systematically, and this happen to be consequence of the Chevalley-Warning theorem [10,45].

Lemma 7. The sum of the zeroes of a cubic form on 5 variables or more overFq is always zero.

Proof. Let us consider the elements ofZa havingα as their first coordinate, and let us denote bynα their number.
These are in fact the common zeroes of(a, x1 − α). By the Chevalley-Warning theorem [10,45], ifa has at least 5
variables, then the characteristic of the field dividesnα. Therefore, their sum has zero on the first coordinate. Applying
this result for all values ofα shows that the sum of zeroes ofa has a null first coordinate. We then just consider all
coordinates successively. ⊓⊔

6 Conclusion

In this paper, we present algorithms for the IP problem with one secret for two random quadratic equations and one
cubic equation. As already explained, there are the most cryptographically relevant instances. Moreover, we explain
the complexity, success probability and give sufficient conditions so that the algorithms work. We combine the use of
the differential and the computation of Gröbner bases of very overdefined systems. All the proposed IP1S challenges
can be broken in practice by the technique we describe, as thefollowing table shows.

ChallengeTime to break on one core

A 3 seconds
B 1 month
C 0 seconds
D 1 hours
E 3 minutes

In view of these results, we conclude that Patarin’s IP1S-Based identification scheme is no longer competitive with
respect to others combinatorial-based identification schemes [42,43,44,41].
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