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ABSTRACT

We present an algorithm for the transformation of a Grobner
basis of an ideal with respect to any given ordering into a
Grobner basis with respect to any other ordering. This algo-
rithm is based on a modified version of the LLL algorithm.
The worst case theoretical complexity of this algorithm is
not better than the complexity of the FGLM algorithm; but
can also give the theoretical complexity with some parame-
ters depending on the size of the output. When the output
is small then algorithm is more efficient. We also present
a first implementation of the algorithm in Maple. This al-
gorithm is restricted to the case of two variables but works
also in positive dimension.

Keywords: Grobner basis, LLL, Reduced Lattice basis,
Complexity.

1. INTRODUCTION

One of the main tools for solving algebraic systems is the
computation of Grébner bases [6, 7, 8, 10]. Grdbner bases
for any ordering can be computed in one step with general
algorithms [6, 12, 14]. But, in practice, it is well known that
it is often much faster to compute: a Grobner basis G; for
an ordering <p; then to transform G into another basis for
another ordering <». When the ideal is zero—-dimensional,
the FGLM algorithm [16] is such an algorithm. The number
of arithmetic operations of this algorithm is O(nN?) where
n is the number of variables and N, the number of solutions
(with multiplicity). Transforming a Grébner basis from a
total degree to a pure lexicographical ordering is the “nat-
ural way” for solving polynomial systems because, from a
complexity point of view, the best ordering is the degree—
reverse-lexicographical (DRL) one but it is easier to ob-
tain the solutions (either numerically or symbolically) from
a Grobner basis for the lexicographical ordering. More sur-
prisingly, experiments have shown that the other way (from
a lexicographical ordering to a total degree ordering) is also
very useful in many applications. For instance, to compute
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a decomposition into prime ideals it is often a good strategy
to compute a lexicographical Grébner basis of the projection
on two variables, compute a decomposition of this projec-
tion and then to return to a total degree ordering to split
the whole ideal (since this is a strong motivation for our
algorithm we have included a sketch of this algorithm in
section 9).

On the other hand LLL[20] is a well known algorithm
for computing short vectors in a lattice; since a Grdobner
basis can be seen as the smallest polynomials in an ideal
wrt the divisibility of their heading terms it is natural to
compare the two algorithms. A possible benefit of LLL is
that the complexity of this algorithm is very sensitive to the
output; so one can hope that when the result is small the
LLL algorithm should be faster than FGLM.

The difficulty in LLL is that it is difficult to “follow” sym-
bolically. A standard algorithm for implementing the arith-
metic of Jacobian groups of curves is LLL ([23, 1, 17]); but
in [2], we have replaced LLL by FGLM so that we can com-
pute the Grobner basis “by hand” on a generic input (that
is to say with symbolic parameters as coefficients); so we
were able to establish explicit formulas.

The plan of the paper is as follows. The section 3 is
devoted to presenting the modified LLL algorithm. The
section 4 includes also the proof of the correctness of the
algorithm. The theoretical complexity of the algorithm is
in 5 and the practical behavior of an implementation of the
algorithm in Maple can be found in 6. The necessary math-
ematical notation is reviewed in section 2. For the sake of
completeness we have also included a description of a meta
algorithm for decomposing ideals in the appendix(section 9)
but this part may be omitted.

The name of this algorithm is simply algorithm LLL. In
the rest of this paper LLL stands for this modified version
of the LLL [20] algorithm.

2. DEFINITIONS

In this paper we will denote by K a field, by K[X,Y] the
ring of polynomials in two variables with coefficients in K
and by I = (f1,...,fm) an ideal in K[X,Y] generated by
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Given an ideal I we will denote by (G,<) the reduced
Grobner basis with respect to an admissible ordering <. We
will say that an element f € K[X,Y] is reduced by G if no



element g € G has a leading term that divides some term
of f; a Griobner basis is reduced if each of its elements is
reduced by the others.

Definition 1 Let (G = (g1,...,9m), <) be a reduced Gro-
bner basis for I, we denote by r;, the degree of HT (g;) w.r.t.
Y. The indices (1,...,m) can be considered in such a way
that r; < riy1. For any positive integer number Dy which
is not less than degy (G), let

Bpy (G) ={Y7igi1<i<m, 0<ji<rip1—ri—1}

where rm41 := Dy. We denote by Mp, (G), the K[X] sub-
module of K[X,Y] generated by Bpy, (G) which is called Dy -
th K[X] module associated to ideal I w.r.t. <. In this case
Bp,, (G) s called Dy -th basis of K[X] module associated to
tdeal I w.r.t. <.

Let b1, ...,b; be vectors in K[X]PY which are linearly in-
dependent over K(X), where ! and Dy are positive integers
and [ < Dy. The lattice L C K[X]PY of rank ! spanned by
b1,...,b is defined as

! 1
L=Y K[X]bi ={>_ X\bi| X € K[X], 1<i<1}.
i—1 i=1

Consider the natural map from K[X]”Y to K[X,Y] =
K[X][Y] which takes the vector © = (v1,...,vpy ) to the
polynomial v = EJD=Y1 v; Y97, Under this map, the lattice
L c K[X]PY¥ corresponds to the K[X]-submodule M (L) of
K[X,Y] defined by

Dy
ML) ={v=> ;Y7 5= (vi,...,vpy) € L}.
j=1
Let by, ..., b; be a free basis for the K[X]-submodule M (L)
of K[X,Y] and let bi,...,b be the corresponding basis for
the lattice L. We denote by B = (b;;Y?~!) the I x Dy
matrix where b; ; is the coefficient of Y?~! in the polyno-
mial b; = Z]D=Y1 b;;Y?~!. Then we define the determinant
d(M(L)) of M(L) to be the maximum of the determinant of
!l x I sub-matrices of B w.r.t. <, and the determinant d(L)
of L to be the determinant d(M (L)) of M(L). Finally, the
orthogonality defect OD(Bl, e ,51) of the basis b, . .., b; for
the lattice L w.r.t. <, is defined as

HT(b)--- HT(b)) — HT(d(L)).

Definition 2 The basis b, ..., b is called reduced if

OD(b1,...,b;) = 0.

For 1 < i < a i-th successive minimum of M(L) w.r.t.
< is a minimum element m; of M(L), such that m; do
not belong to the K[X] submodule of M (L), generated by
mi,...,mi—1. We remark that m; is independent of the
choice of mq,...,m;_1. See [22].

Proposition 3 Let b1, ...,b; be a reduced basis for a lattice
L Cc K[X]PY of rank | < Dy, ordered in such a way that
bi < bj forl < i < j <1 Then b; is a i-th successive
minimum of M (L) w.r.t. < for1 <i<lI.

PROOF. See [21]. O

Proposition 4 Let by,...,b be a basis for a lattice L C
{{[X]D‘: of rank 1 < Dy. If the coordinates of the vectors
bi,...,b can be permuted in such a way that they satisfy

e b <b; for1<i<j<l

® b <bis>big for 1<i<j<l, i<k<Dy

then the basis I~)1, A by is reduced.

PROOF. See [23]. O

Theorem 5 Let (G = (g1,-.-,9m), <) be a reduced Grob-
ner basis for I, Dy a positive integer which is not less than
degy (G) and Ip, be the set of all polynomials in I whose
degree respect to Y is less than Dy, then Mp, (G) = Ip, .

PRrOOF. It is trivial that Mp, (G) C Ip, . If Mp, (G) #
Ipy, let h be the minimum polynomials(w.r.t. <) in Ip,
which do not belong to Mp, (G). Let HT'(h) = X°Y" and
for 1 <i<m, HT(g;) = X°*Y", we can assume r; < Tiy1.
Since G is reduced we have r; < 741 and s; > s;41 for
1<i<m-1(@Gr = riy1 forsome 1 < i < m-—1
then HT(g;)|HT(gi+1) or HT(gi+1)|HT (g;), and if s; <
si+1 then HT(g;)|HT (gi+1) because r; < ri+1). Let

io = max{i < m | HT(g:)|HT(h)}

we claim that ¢o = m or r;; < r < 7j5+1. Otherwise there
exist 7, < rio+1 < r then since s;,+1 < 85, < s we will have
HT(giy+1)|HT(h) which is a contradiction with choice of 4.

Thus we have r—r;y < rjp41—rig+lorr—ry, =r—r, <
Dy —r,, whence thereis b = Y" "0 g;; in Bp, (G) such that
HT(b) = X*0Y". Now if we put

P, HM@W, _,  HC(h)

“EMG) T Hem Y Y

then we will have h belongs to Mp, (G) and HT(h) <
HT(h), thus A < h. On the other hand % belongs to Ip,,
which is a contradiction with choice of h. Hence Mp, (G) =
Ip,. O

3. THEALGORITHM

In this section we present a new version of the LLL algo-
rithm [20] which computes a Grobner basis for some ordering
from the Grobner base corresponding to another ordering in
K[X,Y].

Algorithm 6 (LLL-Paulus)

Input : (Goig = (91,---,9m), <otd) & reduced Grobner ba-
sis for I, <new, and Dy a positive integer sufficiently large
Output : Gnew = (a1,...,a;) a Grébner basis for I w.r.t.
<new

0. (b1,...,b) < ModuleBasis(Goid, <otd, Dy)
1.LE+O
while £ <[ do

2.1. Choose ip € {k+1,...,1} st ~ ~
bip =ming,, {bi : k+1<1i <1}, swap(be1,bio)

2.2. Choose j € {1,...,Dy} s.t
HTnew(bk+1) = HThew (bk+1,j)



2.3. if j <k then

~ 7 HCnew(brt1) y-deg(b —deg(a; ;) = .
G bpy1 — chew(aij) xdeg(bry1,;)—deg(d;,;) <@

else _
¢+ bk+1

2.4.1 if HTpew(c) = HTpew(brs1) then

[ ak+1 +—c

e Permute (kK + 1,...,n) s.t. HThew(@k+1,6+1) =
HTnew(ak+1)

e k+k+1
2.4.2. if HThew(c) <new HTnew(br+1) then

e p+max{0<s<k : as <pew C}

e fori=k+1down top+2 doI;i(—(uil

° bp+1 «—c
ek« p

ModuleBasis 7

Input: (G = (g1,-..,9m), <) a reduced Grébner basis for
I and Dy, a positive integer sufficiently large

Output: Bpy (G) = (b1,...,l)

e[+ Dy —m

e k+ 0

Permute the indices (1,...
HT(g;) = X5y

,m) s.t r; < riy1 where

for ¢ from 1 tom —1do

e for j from 0 tor;41 —r; —1do

e k+k+1
e by (—ngi

for j from 0 to Dy —r,, do

o k+k+1
L] bk(—ngm

4. CORRECTNESS

Theorem 8 Algorithm 6 computes a Grobner basis Gpew
in K[X,Y] such that Id(Goiq) = Id(Grew)-

ProOOF. Let Dy be a positive integer such that
Dy > max{degy (Goa), degy (G)}

where G is a Grobner basis for I w.r.t. <pew. For example
we can assume Dy = 2max deg(Goiq) — 1 if the old ordering
is the lexicographical ordering and the new ordering is the
degree-reverse-lexicographical ordering, see [9, 18]. Also if
the degree of the new ordering w.r.t. Y is at most equal to
the degree of the old ordering w.r.t. ¥ then we can assume
DY = degy (Gold)-

Termination: There is a finite number of passages through
step 2.4.1 because k is increased by 1. Also there is a finite
number of passages through step 2.4.2 because

HT(a1) - HT (ax)HT (bgs1) - - HT(by)

becomes smaller in this step and stays unchanged in the step
2.4.1. Hence the number of passages in the principal loop is
finite, and algorithms terminates when k = I.

Correctness: 1t is clear that Bp, (G) and (a1, ..., a;) gen-
erate the same K[X] submodule M of K[X,Y]. By The-
orem 5, M = Ip,. On the other hand by Proposition 4,

(@1,...,a;) is a reduced basis for the lattice L with basis
(b1,...,b), because the following invariants are valid before
step 2.1:

e qg;<gjfor1<i<j<k
o ap <bjfork<j<lI
® a;;<ai;>apforl<j<i<kandi<t<Dy

Hence by Proposition 4, a; is a i-th successive minimum of
M and HT (a;) < HT(ai+1) (otherwise HT (a;) = HT (a;i+1)
thus @’ = a;41 —a; € M and HT(a') < HT(a;+1) which
implies a’ is dependent with a1,...,a;, so ai+1 = a’ + a; is
also dependent with ai,...,a; which is a contradiction with
choice of a;+1). Now let f be a polynomial in Ip, = M,
then there are A1,...,\; € K[X] such that

1
F=> Na
j=1

but for 1 < i < j < I, HT(\;a;) # HT()\ja;) because
otherwise there are t;,t; s.t. HT(\a;) = X' HT(a;) and
HT(\jaj) = X% HT(a;), but HT(a;) < HT(a;) implies
t; > t; (if ; < t; then X% HT(a;) < X% HT(a;), and if
t; = t; then HT(a;) = HT(a;)) hence o' = X'~ tiq; —a; €
M and HT (a') < HT(a;) which implies a’ is dependent with
Q1,...,@;—1,80 @; = a' —Xt~tiq; depends with ay, . .. 051
which is a contradiction with the choice of a;41. Finally
there is a unique 1 < j <[ such that HT(f) = HT(\ja;),
so HT (a;)|HT(f) which shows that (a1, ..., a;) is a Grobner
basis for I w.r.t. <pew.

Remark. Unlike FGLM, this algorithm is not limited to zero
dimensional ideals.

5. COMPLEXITY

We are now ready to compute the complexity of Algo-
rithm 6 in terms of arithmetical operations in K. By an
arithmetical operation in K, we mean addition, subtraction,
multiplication or division of two elements of K. We use the
notation of Algorithm 6. Denote by

o dy = max {degy(g;) |1 <i<m}

¢ Dy = max{dy,degy (Gnew)}

e | = Dy — r1 where r1 = degy HT(g1)
e dx = max {degx(gi) | 1 <i<m}

e Dx = max {degx(a;) |1 <i<lI}

Every pass of the main loop consists of O(l.Dx) operations
in K for step 2.3. Let us look at, in the worst case, the
number of passages in the loop.

Theorem 9 The number of passages in the loop of Algo-
rithm 6 is S = D} .Dx.



PROOF. See appendix(section 8) [

Thus we have proved the following theorem:

Theorem 10 Algorithm 6 takes O(D%.D%) arithmetical
operations in K to compute a Grobner basis Grew in
K[X,Y] such that Id(Goiq) = Id(Grew)-

Let I be a zero dimensional ideal and denote by NV, the
dimension of the K vector space w Since the complex-
ity of FGLM [16] is O(IV?) it is natural to try to express the
complexity given by theorem 10 in terms of N,. A very con-
servative estimate for Dx, Dy is: Dx < N, and Dy < Ny;
thus Algorithm 6 takes O(N7) arithmetical operations in
K to compute a Grobner basis Gpew in K[X, Y] such that
1d(Goia) = Id(Grew)- A more realistic estimate can be done
if we consider “generic” ideals; in that case the shape of the
lexicographical is (shape basis [4]): [Y — Q(X), P(X)] where
P (resp. Q) is a univariate polynomial of degree N, (resp.
Ny — 1). The staircase (the list of leading monomials of the
elements of the Grobner basis) of such an ideal is plotted in
the following figure.

Y,

Generic lexicographical staircase Generic DRL staircase

[ )]
B
L]
x

with N, = £EXD

—14+/1+8 N},

dY:].,dX:Nb dxzdyz 5

—144/148 N,
Dy ~ @,DX =N,
7
D3 .D% = O(N?)

Hence, for almost all systems, Algorithm 6 takes O(NZ-5)
arithmetical operations in K to compute a Grdébner basis
G Legico 1IN K[X, Y] such that Id(GDRL) = Id(GLem'co) (the
same is true from Lexico to DRL). The best case for this
algorithm is when Dy is small.

6. EXPERIMENTS

We have implemented Algorithm 6 in Maple V Release 5.
In tables 1 and 2 we give the timings for some well known
examples (Pentium 3 at 800 Mhz) modulo 65521. Some
words of caution are necessary: the quality of the computer
implementation of Grobner bases computations may have a
dramatic effect on their performance. On the other hand, a
Maple implementation of such an algorithm is not an effi-
cient implementation even if it is useful to test the correct-
ness of the algorithm and to give a rough idea of its practical
behavior. Of course this implementation can not be com-
pared with a low level implementation in C (as in FGb for
instance). Another consequence is that we must restrict our-
selves to middle size benchmarks. For all this reasons we add
also in tables 1 and 2 the number of arithmetical operations,
N, (namely the number of multiplications modulo 65521):
this number does not depend on the implementation and so
can give an estimate of the intrinsic practical complexity of

the algorithm. We add also the values of the parameters N,
l,dx, Dx, dy and Dy for each examples.

In tables 1 and 2 we compare performance of the new al-
gorithm on various examples: a first family of well known
benchmarks [16, 12, 14] was used; since all this examples
have more than two variables we need, first, to eliminate
n — 2 variables (see also appendix 9). This can be done
easily by computing a Grébner basis for an appropriate or-
dering. The second list of examples corresponds to random
system in two variables. More precisely rand-d-k is the ideal
Id(y — Q(z), P(x)) where Q and P are univariate random
polynomials of degree d and and weight of k for y in the
total degree ordering. All the examples are available on our
web page [15].

Since the preliminary version of this paper [3] the imple-
mentation in Maple of the LLL algorithm has made substan-
tial progresses (from 3 to 300 times faster). This was done by
adding to each entry of the matrix the corresponding lead-
ing term (a very slow operation in Maple) and by replacing
the basic operation P < P +tQ by P < (euclidean) re-
mainder of P divided by @, where P, Q) are polynomials and
t a monomial.

From tables 1 and 2, a first conclusion is that: this not
optimized implementation of LLL is always faster than the
standard implementation of FGLM in Maple. It is also clear
that the best case of the algorithm is when Dy is very small
then the complexity of Algorithm 6 is simply O(NZ) (for
examples rand-50-17, rand-100-34 ,rand-150-51, rand-200-
67 and rand-300-101 Dy becomes 2).

7. CONCLUSION

We have presented a new version of the LLL algorithm
for computing Grobner bases by changing the ordering. We
give a proof and the theoretical complexity of the algorithm.
A first implementation in Maple is also presented and the
first experimental results are encouraging. An open issue is
to generalize this technique to more than two variables.

8. APPENDIX: PROOF OF COMPLEXITY

In every pass of the principal loop, either k increased by
1 or OD(aa,...,ak,bk+1,-..,b;) decreases(w.r.t. <pew), in
other words in this case we have
HCnew(bk+1)Xdeg(bk_'_l!j)—deg(aj,j)

HCnew (a]‘)

and HT (a1) - -- HT (ax)HT (¢)HT (bg+2) - - - HT'(b;) , with re-
spect t0 <pew, is less than
HT(a1)---HT(ar) HT (bg+1)HT (br42) - - - HT'(b;). Hence

degx (HT(c)) < degx (HT (b+1)) + Dx

¢=bry1 — S aj,

and
degy (HT(c)) < Dy.

Note that for two extremes order, the degree reverse lexi-
cographical ordering(<prr), and the lexicographical order-
ing (<res) we have

o X"10 <Lex *** <Lex Xnl
o an’OY <Lez ' * <Lez XTI«Z,IY
o Xn3’0Y2 <Lez ' <Lez X"3,1Y2



o X™dy 0yldy—1 <lep '+ <Lew X Mdy ,1yldy =1

o XMdy+10yldy <Lew '+ <Lex XMdy +1,1y My

Thus the number of passages in the loop, in this case, is

ldy +1

S = E 5,1 — N4,0
=1

but degx (HT'(c)) < degx (HT (bx+1)) + Dx implies that
ni1 <niy10+ Dx fori=1,...,ldy
and hence
S < gy 41,1 +1ldyDx — nyp.

Thus the number of passages in the loop, in this case, is
bounded by S = l.dy.Dx.

On the other hand
X <prrY

Xldx=-lym o xldx=2ym+l . o yldx=-Dy-lym+Dy
Xldxym < xldx—lym+l o xldx-Dyym+Dy
Thus the number of passages in the loop, in this case, is
bounded by S =1l.dx.Dy.

Hence the number of passages in the loop, in the worst
case, is bounded by

S = D%Dx.

9. APPENDIX: META ALGORITHM FOR
DECOMPOSING AN IDEAL INTO
PRIMES

We give now the sketch of an algorithm to speed up the
decomposition of an ideal given by a finite set of genera-
tors into prime ideals. More precisely if I is an ideal the
decomposition into primes is:

\/T:Plﬂ"'ﬂpk

then the output of the algorithm is [G1,...,Gk] where G;
is the Grobner basis of P, for any ordering. The following
algorithm is in fact a “meta algorithm”: it calls a general
decomposition algorithm DEC (see for instance [5]) but the
idea is to apply this general algorithm DEC after decomposing
as much as possible the initial ideal. Hence, in the worst
case, this algorithm is not more efficient than DEC but in
practice it is often much faster when the dimension is < 1.
In [13] we have used a similar method to decompose the
cyclic 9 problem (dimension 1 degree 6156).

Input
F a finite subset of k[z1,...,Zx]

Output
a decomposition into primes of the (radical of the)
ideal generated by F'.

1) Grébner
G a Grobner basis of F' for a DRL ordering.

2) Elimination
Compute, by changing the ordering, G. a Grébner ba-
sis for a block ordering [z1,...,Zn—2] [®n—1,Zn]. This
is an elimination ordering and so G = G1 U G2 where
G2 Ck[zn_1,zx].

3) Lexico
Compute, by changing the ordering, Giex a lexico-
graphical Grobner basis of G»

4) Decompose (2 variables)
Use [19] to compute a decomposition into prime com-
ponents:

\/Id(G2 = Id(P1) n--- ﬂId(Pk)

(each P; is a lexicographical Grobner basis). The main
tool to obtain this decomposition is to compute gcd of
polynomials (see [19]) so this can be done efficiently.

5) DRL in two variables
For each prime components compute, by change of or-
dering, a Grébner for a DRL ordering:

P/ = Grébner(P;,, DRL) i =1,...,k

6) DRL

G = Grébner(G. UP,,DRLYi=1,... k

7) Decompose (general)
For all G} compute a decomposition into primes of G,
and return:

DEC(G}) U - - - UDEC(G})

Key points for the efficiency of the algorithm are steps 1,
3 and 5. Steps 3 and 5 can be done with the algorithm LLL
presented in this paper. Ultimately, the decomposition into
irreducible factors of an ideal is done by factorization of uni-
variate polynomials; hence we need to project the ideal that
is to say computing a Grobner basis for an elimination or-
der; on the other hand it is much more efficient to represent
ideals (to compute the intersection of ideals for instance)
by Gribner bases for a total degree odering (DRL). Thus
it is necessary to be able to change efficiently the internal
representation of an ideal by changing the ordering of the
Grobner basis describing the ideal. The efficiency of this
“meta algorithm” was demonstrated in [13] by computing a
decomposition into primes of Cyclic 9 and 10.
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DRL — Lex Nb of = Ny FGLM LLL | ! | dx | Dx | dy = Dy
in LLL (sec) (sec)
benchmarkD1 575 48 15.4 .15 3 25 48 2
Cyclich 37 55 2.1 .25 9 | 12 | 15 8
UteshevBikker 19,721 36 43.6 1.5 9 8 36 8
Fabrice24 22,799 40 138.3 1.6 9 9 40 8
dessin2 28,821 42 145.2 1.8 9 9 42 8
dessinl 45,357 46 305.7 24 10 | 10 46 9
benchmarkil 188,997 66 579.4 6.4 12 | 11 66 11
cyclic6 50,938 126 421.8 3.15 |13 | 24 48 12
katsura? 2,053,674 128 | > 12,000 | 40.2 | 16 | 16 | 128 15
katsura8 45,992,680 | 256 | > 12,000 | 356.8 | 23 | 23 | 241 22
rand-50-17 1,632 50 10.5 1 |3 3450 2
rand-100-34 6,666 100 1414 .3 3 | 67 | 100 2
rand-150-51 14,798 | 150 | 8348 5 | 3 | 101 | 150 2
rand-200-67 30,822 | 200 | 4261 8 | 3 | 134 | 200 2
rand-300-101 69,300 | 300 | >4000 | 1.4 | 3 | 201 | 300 2
rand-50-1 52,758 50 | 3645 26 |10 | 10 | 50 9
rand-100-1 792,333 | 100 | >5000 | 17.5 | 14 | 14 | 100 13
rand-150-1 | 4,196,783 | 150 | > 20,000. | 62.6 | 17 | 17 | 150 16
rand-200-1 | 17,950,766 | 200 | > 20,000. | 157.2 | 20 | 20 | 200 19
rand-300-1 106, 495,461 | 300 | > 20,000. | 766.7 | 25 | 25 | 300 24
Table 1: Comparison FGLM/LLL (from DRL to Lex) modulo p.
Lex —+ DRL Nb of * Ny FGLM LLL l |dx =Dx | dy | Dy
in LLL (sec) (sec)
benchmarkD1 1,200 48 8.6 2 3 1 2
cyclich 307 55 24 .5 9 7 8
UteshevBikker 46,111 36 186.5 7.3 9 1 8
Fabrice24 56, 550 40 245.4 8.8 9 1 8
dessin2 62,588 42 291.0 9.3 9 1 8
dessinl 94, 325 46 522.1 13.4 10 46 1 9
benchmarkil 285,970 66 2,847.7 35.3 12 66 1 11
cyclic6 11,070 126 75.1 7.1 13 48 6 12
katsura? 1,941,523 | 128 | > 12,000. | 192.2 | 16 128 2 15
katsura8 23,187,086 | 256 | > 12,000. | 1927. | 23 241 16 | 22
rand-50-17 1,896 50 5.1 35 | 3 50 1] 2
rand-100-34 10,760 | 100 | 216.7 9 |3 100 1| 2
rand-150-51 44,394 | 150 | 1486.1 17 | 3 150 1| 2
rand-200-67 79, 596 200 8090. 2.8 3 200 1 2
rand-300-101 178,794 | 300 | > 8000 5.4 3 300 1 2
rand-50-1 110,774 | 50 | 3393 151 |10 50 1] 9
rand-100-1 905,447 | 100 | > 6,000. | 100.6 | 14 100 1| 13
rand-150-1 | 3,052,423 | 150 | > 50,000 | 3105 | 17 150 1] 16
rand-200-1 | 7,646,326 | 200 | > 50,000 | 711.9 | 20 200 119
rand-300-1 | 27,156,881 | 300 | > 50,000 | 2647.5 | 25 | _ 300 1| 24

Table 2: Comparison FGLM/LLL (from Lex to DRL) modulo p.




