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Abstract. In this work, we initiate the formal treatment of cryptographic con-
structions (“Polly Cracker”) based on the hardness of computing remaimadell

ulo an ideal. We start by formalising and studying the relation between the ideal
remainder problem and the problem of computing atsder basis. We show both
positive and negative results. On the negative side, we define a symmetric Polly
Cracker encryption scheme and prove that this scheme only achieves bounded
CPA security under the hardness of tifieproblem. Furthermore, we show that a
large class of algebraic transformations cannot convert this scheme to a fully se-
cure Polly Cracker-style scheme. On the positive side, we formalise noisy variants
of the ideal related problems. These problems can be seen as natural generalisa-
tions of theLWE problem and the approximate GCD problem over polynomial
rings. After formalising and justifying the hardness of the noisy assumptions we
show that noisy encoding of messages results in a fi-CPA secure some-

what homomorphic encryption scheme. Together with a standard symmetric-to-
asymmetric transformation for additively homomorphic schemes, we provide a
positive answer to the long standing open problem of constructing a secure Polly
Cracker-style cryptosystem reducible to the hardness of solving a random system
of equations. Indeed, our results go beyond that by also providing a new family
of somewhat homomorphic encryption schemes based on new, but natural, hard
problems. Our results also imply that RegelW¥E-based public-key encryption
scheme is (somewhatjultiplicativelyhomomorphic for appropriate choices of
parameters.

Keywords. Polly Cracker, Gobner bases, Learning with errors, Homomorphic
encryption, Provable security.

1 Introduction

BACKGROUND. Homomorphic encryption [38] is a cryptographic primitive which al-
lows to perform arbitrary computation over encrypted data. In such a scheme, given a
function f and a ciphertext encrypting a plaintextn, it is possible to transforrato a

new ciphertext’ which encryptsf (m). From an algebraic perspective, this homomor-
phic feature can be seen as the ability to evaluate multivariate (Boolean) polynomials
over ciphertexts. Hence, an instantiation of homomorphic encryption over the ring of

* An extended abstract of this work will appear in ASIACRYPT 2011.



multivariate polynomials itself is perhaps the most natural strategy, although not con-
ceptually the simplest (cf. [57]).

Indeed, let¥ C P =F[xo,...,X,—1] be some ideal and denote an injective function
by Encodg)), with inverseDecod€), that maps bit-strings to elements in the quotient
ring P/.7. If DecodéEncodgmy) o Encodgm)) =mp o my for o € {+,-}, we can
encrypt a messaga as

c= f +Encodgm) for f randomly chosen in/.

Decryption is performed by computing remainders mod#loFrom the definition of

an ideal the homomorphic features of this scheme follow. The problem of computing
remainders modulo an ideal was solved by Buchberger in [19-21], where he introduced
the notion of Gébner bases, and gave an algorithm for computing such bases.

In fact, all known homomorphic schemes which support both addition and multi-
plication are based on variants of the ideal remainder problem over various rings. For
example in [57] the ringp) € Z for p an odd integer is considered. In [38] ideals in
a number field play the same role (cf. [55]). One can even view Reg@vts-based
public-key encryption scheme [51] in this framework. Furthermore, if we instantiate
the construction in [48] ovelP, we can view its multiplication operation as construct-
ing the set of cross terms appearing in multivariate polynomial multiplication. Finally,
we note that the construction displayed above is essentially Polly Cracker [36, 10, 44],
a family of cryptosystems dating back to the early 1990s. Despite their simplicity, our
confidence in Polly Cracker-style schemes has been shaken as almost all such proposals
have been broken [30]. This is partially due to the lack of formal treatment of security
for such schemes in the literature. In fact, it is a long standing open research challenge
to propose a secure Polly Cracker-style encryption scheme [10] (cf. also [37, p. 41]).

CONTRIBUTIONS & ORGANISATION. Our contributions in this paper can be sum-
marised as follows: 1) we initiate the formal treatment of Polly Cracker-style schemes
over multivariate polynomial rings and characterise their security; 2) we show the im-
possibility of converting such schemes to fulldD-CPA-secure schemes through a
large class of transformations; 3) we introduce natural noisy variants of classical prob-
lems related to Gibner bases which also generalise previously considered noisy prob-
lems; 4) we present a new somewhat (and doubly) homomorphic encryption scheme
based on a new class of computationally hard problems.

More precisely, we start by settling notation in Section 2 and Section 3. In Sec-
tion 4, we formalise various problems associated with ideals in polynomials rings in
the language of game-based security definitions. In particular, we show that computing
remainders modulo an ideal with overwhelming probability is equivalent to computing
a Gibbner basis for zero-dimensional ideals. We then show that deciding ideal mem-
bership and computing remainders modulo an ideal are equivalent for certain choices
of parameters. This allows us to introduce a symmetric variant of Polly Cracker and
precisely characterise its security guarantees. In particular, we show that this scheme
achieves a weaker version fD-CPA security where the total number of ciphertexts
that the attacker can obtain is bounded by an a priori fixed polynomial. We prove this
result under the assumption that computin@i@rer bases is hard if only a small num-
ber of polynomials are available to the attacker (Section 5). BouldiBelCPA security



is the best level of security that this scheme can possibly achieve: we give an attacker
breaking the cryptosystem once enough ciphertexts are obtained.

In Section 6, using results from computational commutative algebra, we show the
security limitations of the constructed scheme are in some datigesic. More pre-
cisely, we show that a large class of algebraic transformation cannot turn this scheme
into a fully IND-CPA-secure and additively homomorphic (public-key) Polly Cracker-
type scheme. Our result captures both known symmetric-to-asymmetric conversion
techniques for homomorphic schemes in the literature [53, 57].

To go beyond this limitation, we consider a constructions witgreods), as in-
troduced in the beginning of this section, is randomised (and hBecedd) is no
longer injective). To prove security for such schemes, we consider noisy variants of
the ideal membership and related problems. These can be seen as natural generalisa-
tions of the (decisional)WE and the approximate GCD problems over polynomial
rings (Section 7). After formalising and justifying the hardness of the noisy assump-
tions in Section 8, we show that noisy encoding of messages can indeed be used to
construct a fullND-CPA secure somewhat homomorphic scheme. This result also im-
plies that Regev'$ WE-based public-key schemensultiplicativelyhomomorphic un-
der appropriate choices of parameters. Our result, together with a standard symmetric-
to-asymmetric conversion for homomorphic schemes, provides a positive answer to the
long standing open problem proposed by Barkee et al. [10], which asks for a public-
key Polly Cracker-style encryption scheme whose security is based on the hardness
of computing Gbbner bases for random systems of polynomials. In addition, we pro-
vide a new family of somewhat homomorphic schemes which are based on new natural
variants of well-studied hard problems. In Section 9 we show that our scheme allows
proxy re-encryption of ciphertexts. This re-encryption procedure can be seen as trading
noise for degree in ciphertexts. In this section, we also show that our scheme achieves a
limited form of key-dependent message (KDM) security in the standard model, where
the least significant bit of the constant term of the key is encrypted. We leave it as an
open problem to adapt the techniques of [2] to achieve full KDM security for the Polly
Cracker with noise scheme. We discuss concrete parameter choices in Section 10 and
our reference implementation in Section 11.

1.1 Related Work

Polly Cracker.n 1993, Barkee et al. wrote a paper [10] whose aim was to dispel the ur-
ban legend that “Gibner bases are hard to compute”. Another goal of this paper was to
direct research towardgparsesystems of multivariate equations. To do so, the authors
proposed the most obvious densé@ter-based cryptosystem, namely an instantiation
of the construction mentioned at the beginning of the introduction. In their scheme, the
public key is a set of polynomialsfy, ..., fm—1} C .# which is used to construct an ele-
mentf € .#. Encryption of messagesc P/.# are computed as= 3 h; fi+m=f +m
for f € .#. The private key is a @Gbner basisG which allows to computen = ¢
mod.# = ¢ modG. As highlighted in [10] this scheme can be broken using results
from [28] (cf. Theorem 6).

At about the same time, and independently from the work of Barkee et al., Fellows
and Koblitz [36, 44] proposed a framework for the design of public-key cryptosystems.
The ideas in [36] were similar to Barkee et al.'s cryptosystem, but differed in two as-



pects. First, the polynomials generating the public ideal were derived from combina-
torial or algebraic NP-complete problems (such systems were named CA-systems for
“combinatorial-algebraic”). Second, the secret key was notabfser basis of the pub-

lic ideal, but rather a root of it, i.e., a Goner basis of a maximal ideal containing

the public ideal. The main instantiation of such a system was the Polly Cracker cryp-
tosystem. Fellows and Koblitz suggested several NP-complete problems mainly based
on graph-theoretic problems for use in this context. The authors, however, did not in-
vestigate how one might generate “hard-on-average” instances of these problems with
known solutions.

Subsequently, a variety of sparse Polly Cracker-style schemes were proposed. The
focus on sparse polynomials aimed to prevent the attack based on Theorem 6, yet almost
all of these schemes were broken. We point the reader to [30] for a good survey of
various constructions and attacks. Currently, the only Polly Cracker-style scheme which
is not broken is the scheme in [23]. This scheme is based on binomial ideals (which in
turn are closely related to lattices).

Not only can our constructions be seen as instantiations of Polly Cracker (with
and without noisy encoding of messages), they also allow security proofs based on the
hardness of computational problems related to (multivariate) polynomial ideals with
respect to random systems.

Homomorphic Encryptionin the last decades several different approaches to con-
struct singly homomaorphic schemes — with respect to hardness assumptions and proofs
of security — have been investigated. With respect to doubly (i.e., additively and mul-
tiplicatively) homomorphic schemes, a number of different hardness assumptions and
constructions appeared in the literature. These include the Ideal Coset Problem of Gen-
try [38], the approximate GCD problem over the Integers of van Dijk et al. [57], the
Polynomial Coset Problem as proposed by Smart and Vercauteren in [55], the Approx-
imate Unique Shortest Vector Problem, the Subgroup Decision Problem, and the Dif-
ferential Knapsack Vector Problem all of which appear in the work of Aguilar Melchor
et al. [48] and recently the Learning with Errors Problem of Brakerski and Vaikun-
tanathan [18]. There is a general agreement in the community that whilst the design of
fully homomorphic encryption schemes is a great theoretical breakthrough, all schemes
so far have remained rather impractical. However, research in this direction is progress-
ing rapidly. Recently, Gentry and Halevi [40] have been able to implement all aspects
of Gentry’s scheme [38], including the bootstrapping step. In this work the authors
also improve on the work of Smart and Vercauteren [55]. However, the bootstrapping
step still renders somewhat homomorphic schemes impractical (cf. [45]). Hence, recent
constructions aim to avoid it [17, 39].

Recently and independently of this work, in [18] a construction based on LWE
was proposed, denoté&H in [18], which can be seen as a linear variant of our noisy
Polly Cracker scheme. Furthermore, the technique we propose in Section 9 is also in-
dependently proposed in [18]. However, in contrast to our work [18] has an explicit
non-algebraic perspective. Also a second scheme in [18], deBdisdachievedully
homomorphic encryption based on a “dimension-modulus reduction” technique — while
our work only achieves somewhat homomorphic encryption. We note that this technique
also applies to some of our constructions. Finally, we note that improvements such as



[24] also immediatly apply to our constructions which generalise those constructions
considered in [24].

The main difference between our work and previous work is that we base the secu-
rity of our somewhat homomorphic schemermewcomputational problems related to
ideals over multivariate polynomial rings. Furthermore, due to the versatilityfiGar
basis theory, our work can be seen as a generalisation of a number of known schemes
and their underlying hardness assumptions.

M 2 CryptographyOur work can also be seen in connection with public-key cryp-
tosystems based on the hardness of solving multivariate quadratic equa#gs. (
The difference is that our cryptographic constructions enjoy strong reductions to the
known and hard problem of solvingrandomsystem of equations, whereas the bulk
of work in . 2 cryptography relies on heuristic security arguments [58, 49, 16, 29]. In
contrast, our work is more in the direction of research initiated by Berbain et al. [14, 3]
who proposed a stream cipher whose security was reduced to the difficulty of solving
a system of random multivariate quadratic equations &geiNote also that the con-
cept of adding noise to a system of multivariate equations has been also proposed by
Gouget and Patarin in [41] for the design of an authentication scheme. Our work, how-
ever, presents a more general and complete treatment of problems related to ideals over
multivariate polynomials — both with and without noise — and aims to provide a formal
basis to assess the security of cryptosystems based on such problems.

2 Preliminaries

NOTATION. We writex « y for assigning valug to a variablex, andx «g¢ X for sam-
pling x from a setX uniformly at random. IfA is a probabilistic algorithm we write
y «<—¢ A(x,...,xn) for the action of running\ on inputsxi, . ..,x, with uniformly cho-
sen random coins, and assigning the resulf.téor a random variablX we denote
by [X] the support ofX, i.e., the set of all values that takes with non-zero proba-
bility. We use ppt for probabilistic polynomial-time. We call a functigfA ) negligi-
ble if [n(A)] € A~“(), We say that a function spaéanSp(P) and a message space
MsgSp(P), both parameterised 1, are compatible if for any possible value ®fand
for any f € FunSp(P), the domain off is MsgSp(P).

GAMES-BASED SECURITY DEFINITIONS AND PROOFS In this paper we use the code-
based game-playing language [13]. Each game has butiadize and aFinalize pro-
cedure. It also has specifications of procedures to respond to the adversary’s various
oracle queries. A gam@ame is run with an adversaryy as follows. Firstinitialize

runs and its outputs are passed#o Then.e runs and its oracle queries are answered

by the procedures diame. Wheng? terminates, its output is passedrimalize which

returns the outcome of the gameThis interaction is written a6ame” = y. In each

game, we restrict our attention to legitimate adversaries, which is defined specifically
for each game.



3 Basics of Gbbner Bases

In this section we recall some basic definitions related tob@er bases [21, 19, 20].
For a more detailed treatment we refer to, for instance, [26].

We consider a polynomial rinB = F[Xo, ..., Xn—1] over some finite field (typically
Fq), some monomial ordering on elementsRyfand a set of polynomialf, .. ., f1.
We denote by Mf) the set of all monomials appearing fne P. By LM (f) we de-
note the leading monomial appearing fine P according to the chosen term order-
ing. We denote by LCf) the coefficiente F corresponding to LNIf) in f and set
LT(f) =LC(f)-LM(f). We denote by_4 the set of polynomials of degreed (and
analogously for-, <, >, and= operations). We defin@_q as the underling field includ-
ing 0 € F. We defineP.g as zero. Finally, we denote By, the set of all monomials
< mfor some monomiat (and analogously for, <, >, and= operations). We assume
the usual power product representation for elemenk of

Definition 1 (Generated Ideal).Let fy,..., f_1 be polynomials in P. We define the
set

m-1
F = {fo,..., fmo1) = { thifi|ho,...,hmleP}
i=

as theideal generateby fy,..., fm_1.

Itis known that every# ideal of P is finitely generated, i.e., there exists a finite number
of polynomialsfo,..., fn_1 in P such thaty = (fo,..., fm—1). Roughly speaking, a
Grobner basis is a particular generator set of an ideal.

Definition 2 (Grobner Basis).Let.# be an ideal off[xo, ..., X,—1] and fix a monomial
ordering. A finite subset & {qgo,...,0m-1} C -# is said to be &robner basi®f .7 if
for any f € .# there exists ge G such that

LM(gi) [ LM(f).

REMARK. We note that for vector spac&$ the notion of a Gobner basis coincides
with row echelon forms, and @bner basis algorithms (see below) reduce to Gaussian
elimination. For univariate polynomials, e.@x] andZ[x], the notion of a Gibner
basis coincides with the greatest common divisor and runnin@hr@r basis algorithm
computes the GCD.

It is possible to extend the division algorithm to multivariate polynomials: we write
r=f modGwhenf = 3™ hig+rwith M(r)N (LM (G)) = 0. WhenG is a Gibner
basisr is unique and is called theormal formof f with respect to the idea¥. In
particular we have that mod.# = f modG = 0 if and only if f € .#. TogetherP
and.7 define the quotient rin®/.# and, by abuse of notation, we wrifec P/.7 if f
mod.# = f where equality is interpreted as those on elemenis dhat is, we identify
elements of the quotieft/.# with their minimal representation i.

As defined above, a Gbner basis is not unique. For instance, we can multiply any
polynomial of a Gébner basis by a non-zero constant. However, from argbar
basis we can compute the unique reducedb@er basis in polynomial time. The algo-
rithm performing this transformation is denotRdduceGB(+) in this work and is given
in Algorithm 1.



Algorithm 1: ReduceGB(-)

Input: Q — a set of polynomials forming a Gloner basis

Result the reduced Gibner basis fo€)

1 begin

2 O—g;

3 while Q # @ do

4 f «— the smallest element @ according to the term ordering;
5

6

7

Q—Q\{f} _
if LM (f) ¢ (LM (Q)) then
| Q—Qu{Lc(f)~t-f}

return [h modQ\{h} |he qJ;

9 end

Definition 3 (Reduced Gtobner Basis).A reduced Gibner basifor an ideal.# C P
is a Grobner basis G such that:

1. LC(g)=1,forallg € G;
2. Vg € G, Z2me M(g) such that m is divisible by some elementbf (G\ {g}).

Buchberger [19] proved that in order to compute @l@rer basis from a given ideal
basis, it is sufficient to consider S-polynomials. From such a basis, it is easy to compute
the (unique) reduced @bner basis using Algorithm 1.

Definition 4 (S-Polynomial).Let f,g € F[Xo,...,%n—1] be non-zero polynomials.

— LetLM (f) = 4% and LM (g) = [1=2 %7, with ai, B € N, denote the leading
monomials of f and g respectively. For evérg i < n sety := max(a;, ) and
denote by % the ponnomiaIﬂinz‘leiV'. Then X is the least common multiple of
LM (f)andLM (g):

XY =LCM(LM(f),LM(@)).

— The S-polynomial of f and g is defined as

xY xY
SO =7 T T

g.

In particular, Buchberger showed that a basis is &bBer basis if all S-polynomials
“reduce to zero”.

Definition 5 (Reduction to zero).Fix a monomial order in P and let & {qgo,...,9s-1} Cli
P be anunorderedset of polynomials and let t be a monomial. Given a polynomial
f € P, we say f has atepresentatiomwith respect to< and G if f can be written in
the form

f=apgo+ - +as 10s 1,

such that wheneverg # 0, we have gy <t. Furthermore, we write that f? o(“f
reduces to zero”) if and only if f has doM ( f)-representation with respect to G.



Note thatf modG = 0 implies thatf e 0 while the converse is false.

Theorem 1 (Buchberger’s Criterion). A basis G={go,...,0s-1} for anideal.# is a
Grobner basis if and only if for all # j we have $gi,9;) s 0.

Proof. See [12, p.211ff]. ad

From Theorem 1 an algorithm follows [19] which computes @ltsrer basis by con-
structing and reducing S-polynomials. However, this algorithm — Buchberger’s algo-
rithm — spends most of its time reducing elements to zero, a computation which is
useless. Buchberger also proposed two criteria which tefl psori whether the S-
polynomial of two polynomials reduces to zero. We make use of the first criterion in
this work:

Theorem 2 (Buchberger's First Criterion). Let f,g € P be such that CM (LM (f),LM (g)) =}
LM (f)-LM(qg), i.e., they have disjoint leading terms. Theii 9) m 0.
9

Proof. See [12, p.222ff]. ad
From this, we get:

Corollary 1. Aset{go,...,0n-1} CPwithLM(g;) = x?i withd > 0foralli,0<i<n
is a Grobner basis.

All ideals considered in this work are zero-dimensional, i.e., their associated varieties
have finitely many points. The following lemma establishes the equivalence between
various statements about zero-dimensional ideals.

Lemma 1 (Finiteness Criterion).Let.# = (fo,..., fm-1) C P with P=TF[Xo,...,X1_1]
be an ideal. The following conditions are equivalent.

1. The system has only finitely many solutions in the algebraic closite of
2. Fori=0,...,n—1, we haves NF[x] # @.

3. Foralli,0<i < n, there existsigs .# such thalLM (g;) = xidi with d > 0.
4. The set of monomialg.g) = M(P)\ {LM(f) | f € .#} is finite.

5. ThelF-vector space P.¢ is finite-dimensional and a basis is given /5.

As soon as one of these conditions holds true, then we call the ileato-dimensiondl
Moreover, the number of solutions counted with multiplicities in the algebraic closure
of F is exactly the cardinal of &) which is the dimension of the vector space®.

Proof. See [26, p.234ff]. a

In this work we use reduction modulo an ideal to sample polynomials from some
ideal. The following lemma will be helpful to assert that this sampling is uniform.

Lemma 2. Let.¥ C P=TFq[xo,...,%—1] be some ideal. Any elemen& P withdeq f) =]
b has a unique representation=f f +r with f € .# and re P/.# wheredeg f) <b
anddedr) < b. In particular, if M is the set of monomiaésP/.# with degree< b, then
forany f € .7 there are §"I elements;fin P with f = f; — (i mod.#).

Proof. The monomials irP-, span a(”gb)-dimensional vector spadé overFg. The
monomialse P/.# up to degreeb span a subspace df with dimension|M|, from
which the claim follows. a



4 Grobner Basis and Ideal Membership Problems

In this section we formalise various problems associated witib@ar bases. Follow-

ing [27], we definea computational polynomial ring schemkhis is a general frame-

work allowing to discuss in a concrete way the different families of rings that may be
used in cryptographic applications. More formally, a computational polynomial ring
schemeZ is a sequence of probability distribution pblynomial ring descriptions
(P»)aen- A polynomial ring descriptiohP specifies various algorithms associated with

P such as computing ring operations, sampling elements, testing membership, encoding
of elements, ordering of monomials, etc. We assume each polynomial ring distribution
is overn=n(A) variables, for some polynomialA ), and is over a finite prime field of

sizeq(A).

REMARK. There is a one-to-one correspondence of ideals over polynomial rings over
finite extension field$ C Fon [Xo, . .., Xn—1] and ideal over polynomial rings over prime
fieldsJ C Fq[Xo, - . ., Xa—1, 0] by mapping a root of » to a and adding the characteristic
polynomial of Fqn to the generating basis, hence finite extension fields are covered by
this definition. The rindZ{xo, - . ., Xn—1] IS Not covered by our definition, but it can easily

be generalised.

OnceZ is given and a concrete rirfgis sampled, one can define various@mer
basis generation algorithms &h In this work we denote byEBGen(l" ,P.d) any ppt
algorithm which outputs a reduced @mer basisG for some zero-dimensional ideal
# C P such that every element @ is of degree at modd. Of particular interest to
this paper is the @bner basis generation algorithms shown in Algorithm 2 called
GBGengense(+). Throughout this paper we assume an implicit dependency of various
parameters associated withon the security parameter. Thus, we dropo ease no-
tation. Note thalGBGengense(+) for d = 1 captures the usual case of a set of polyno-

Algorithm 2 : Algorithm GBGengense (17, P,d)

1 begin

2 if d = 0then return {0};
3 for 0<i<ndo

4 9i HXid;

5 for m;j € M_ do

6 Gj —¢Fq;

7 L gi < gi +Cjmj;

return ReduceGB({Qp,...,0On-1});
9 end

mials which have a (unique) common root in the base field, and wherggll M x

1 Here we are slightly abusing notation and usfhigoth for the polynomial ring and its descrip-
tion.



for all i,0 < i < n. This case is common in cryptographic applications such as alge-
braic cryptanalysis [34, 25] and a well-studied case. The next lemma — which is an easy
consequence of Corollary 1 — establishes GBGengense () returns a Gobner basis.

Lemma 3. Let G= {go,...,0n-1} C P=F[Xo,...,X:—1] be the set of polynomials de-
fined as

gi :Xid+ZCijmj7 foralli,0<i<n, withmj € M_, and g € F.

Then G is a Gbbner basis for the zero-dimensional idéab, ...,gn-1). In addition,
the dimension of thEy-vector space P(Qo, .. .,0n-1) is d".

Proof. The Gibbner basis property follows from Corollary 1. Clea®(,#) = M(P) \

{LM(f)| f € .#} is the set of all monomials of the form{’;ol&-d‘ for 0 < d; < d. Since

there arad" such elements, this is also the dimension of the vector space by Lemma 1.
O

REMARK. We note that using Buchberger’s First Criterion in Algorithm 2 is a special
case of using Macaulay’s trick [50].

We can now formally define the @bner basis problem, which is the problem of
computing the Gibner basis for some ide& given a set of polynomial, ..., fm-1 €
g

Definition 6 (Grobner Basis GB) Problem). The Gibbner basis problem is defined
through gameGB 5 cegen(.).d,0,m @S Shown in Figure 1. The advantage of a ppt algo-
rithm .« in solving theGB problem is defined by

b . o
AdVi@,GBGen(-),d,b,m,,Q/(A) i=Pr|{GB% cggen()dbmA) = T} :

An adversary is legitimate if it calls thBample procedure described in Figure 1 at
most m=m(A) times.

Initialize (1}, 22, d): Samplg): Finalize():

begin begin begin
PegPy; f g Pep; | return (G=G');
G «—¢ GBGen(1},P,d); f—f—(f modG); end
return (1*,P); return f;

end end

Flg 1. GamEGBy’GBGen (-),d,b,m-

It follows from Lemma 2 that thé&ample procedure in Figure 1 returns elements of
degreeb which are uniformly distributed ifG). We note that if we instantiateBGen ()
with GBGengense() We must requiréb > d in order to exclude the trivial case where
Samplealways returns zero.

We recall that given a @bner basi&s of anideals,r=f mod.# =f modGis
the normal form off with respect to the idea¥. We sometimes drop the explicit refer-
ence to.# when itis clear from the context which ideal we are referring to, and simply
refer tor as the normal form off. Computing normal forms is the ideal remainder
problem which we formalise below.



Definition 7 (Ideal Remainder (IR) Problem). The ideal remainder problem is de-
fined through gam&R 5 Gggen (.),d,p,m ShOwn in Figure 2. The advantage of a ppt algo-
rithm <7 in solving thelR problem is defined by

ir . 4
AV cBGen().dbma (A) 7= PTIRD cagen().dbm(d) = T} —1/c,

where c= qdiqu(P/ ©) An adversary is legitimate if it calls thBample procedure
described in Figure 2 at most sam(A ) times. We also note that in the above advantage
term, g, P and G denote the finite field, the polynomial ring, and th&hGer basis
which are generated during the game respectively.

Initialize (1}, 2,d): Samplg): Challenge): Finalize(r’):

begin begin begin begin
P—gPs; f g Pep; f g Pep; r—f modG;
G «g GBGen (1*,P.d); f'— (f modG); return f; return r =r';
return (1*,P); return f — f/; end end

end end

Flg 2.Gamel R;’VﬁGBGen (-),d,b,m-

In fact, we show below that under certain conditions the two problems are equivalent.
That is, not only do Gibner bases allow to solve thR problem, but we also have

the reverse reduction. Lemma 4 proves a weak form of this equivalence. That is, for
Lemma 4 below to be meaningful we require that lReadversary returns the correct
answer with aroverwhelmingprobability. This is due to the restriction thdamplecan

only be called a bounded number of times, and thus one cannot amplify the success
probability of thelR adversary through repetition. We note that it is possible to prove

a stronger statement than Lemma 4 using a proof technique from [15]. However, the
weaker and simpler statement is sufficient in our context.

Informally, the reduction of th&B problem to thelR problem works as follows.
Consider an arbitrary elemegtin the Gbner basi$. We can writeg; asm; + §; for
someg; < g; andm; = LM (gi). Now, assume the normal form of is r; and suppose
thatr; < m. This implies thatm = Z?;é hjg; +r; for someh; € P. Hence, we have
m —r; € (G): an element (G) with leading monomiain. Repeat this process for all
monomials up to and including degreeand accumulate the resultg —r; in a list
G. The listG is a list of elements: (G) with LM (G) D LM (G) which impliesG is a
Grobner basis. We note that this is the core idea behind the FGLM algorithm [33] which
allows to efficiently change the ordering of adner basis (and also the “Bulygin
attack” in a different context [22]).

Lemma 4 (R Hard < GB Hard). For any ppt adversary against thelR problem,
there exists a polynomigloly() and a ppt adversary? against theGB problem such
that

Conversely, for any ppt adversagy against theGB problem, there exists a ppt adver-
sary </ against theR problem such that

b ir
AVE cggen()dbmz(A) =AWV cogen() dbme (A)-



Proof. The second statement is classical. It is proven for instance in [26, p. 82] which
shows that a Gibner basis allows computing remainders modulo the ideal spanned by
the basis in polynomial time.

To prove the opposite direction, we construct an algoritfragainst theB prob-

lem based on an algorithry against theR problem. This algorithm is described in
Algorithm 3.

Algorithm 3: GB adversaryZ from IR adversarys

1 begin
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end

2 receiveg 1", P);
G— 2, Fk—],0;
querySamplg) to getf;
M « the list of monomials of degre€ d, smallest first;
for me M do
if 3g € G s.t.LM(g) | mthen continue
c,t —0,0;
for Me M. do
L C<—$ Fq,
t—t+c-m
t—t modG;
k «— 0;
run.<Z (1%, P) as follows:
if @7 queriesSample() then
if k=#F then
querySamplg) to geth;
L F —FuU{h}; k—k+1;

returnk;

if @7 queriesChallenge() then
L returnf +m+t;

if « callsFinalize(r’) then
| setr —r'—t;

ifr <~mth~en
| G—=Gu{m-r};

call Finalize(G);

First we consider correctnessrifreturned by« in line 23 satisfies’ = f + m+t
modG thenm—r = m+t—r’in line 25 is an element iKG) with leading monomial
m. To see this recall that we hafet m+t = z?;é hjgj+r'for0<j<n,hj e Pand
' ¢ G which implies — sincd € (G) —thatm-+t—r' = 37 3hjgf for0< j <n,hj e P
and hencen-+t —r’ € (G). By constructiort < mand we only add elements @with
r < m. We compute such elements for every monomial of degreleIn particular, we



compute such elements for every I(yl). Since LM(G) D LM (G) we have thaG is a
Grobner basis for the idedG).

Now, let us consider resources. Algorithm 3 runs in polynomial time. The outer loop
is repeatedh(A )9 times in the general case which is polynomiallirby assumption.
Note that if GBGen(-) = GBGengense(-) We can seM « [xd ... xd] in line 5 and
thus repeat the outer loop oniyA ) times. Ifk— 1 is an upper bound on the number of
queries tcSamplethat.« makes,Z makes at mogt queries to itsSampleoracle.

Finally, since we rum(A )9 independent copies af for n(A )9 different challenges,
and require all of them to return the correct results, the overall advantage is the product
of the advantages of/’s. O

The decisional variant of thiR problem is to decide whether the normal form of
some element modulo an ideal is zero or not, i.e., whether this element is in the ideal
or not. This is the well-known ideal membership problem formalised below. We note
that solving this problem was the original motivation which lead to the discovery of
Grobner bases [19].

Definition 8 (Ideal Membership (IM) Problem). The ideal membership problem is
defined through the gam# 5 cggen(.),d,o,m @S Shown in Figure 3. The advantage of a
ppt algorithm in solvingIM is defined by

im . o
Adv?ﬂ,GBGen(-).d,nm?ﬂ(A) =2-Pr lM,@.GBGen(~)7d,b,m(A) =T -1

An adversary is legitimate if it calls thBample procedure described in Figure 3 at
most m= m(A) times.

Initialize (1}, 22, d): Samplg): Challenge): proc. Finalize(c'):
begin begin begin begin
P—gPy; f g Pep; f g Pep; | return (c=c¢);
G <5 GBGen (1*,P.d); f'— f modG; if c=1then end
c—g{0,1}; return f — f’; f—f—(f modG);
return (1A,p); end return f;
end end

Flg 3.GamelM 2,GBGen(-),d,b,m-

Clearly any adversary which can solve tifReproblem can also solve tH#&1 problem.
However, if the search space of reminders mod@b is sufficiently small, i.e., when
qdiqu(P/<G>) = poly(A), and under similar assumptions as for Lemma 4, one can also
perform the converse reduction. That is, one can solvéRh@oblem using an oracle
for the IM problem. Lemma 5 below proves this equivalence for the special case of
GBGengense(+). ONnce again, this is sufficient in our context. As before, for Lemma 5 to
be meaningful we require that thi adversary returns the correct answer vatrer-
whelmingprobability.

Informally, the construction of alR adversary from atiM adversary proceeds as
follows. Let f be the challenge polynomial. The attacker simply exhaustively searches
all elements of théy vector spacé®/(G) until the right remainder is found. This



occurs iff —r € (G) and can be then detected using Ehadversary. However, there is

a technical difficulty here. In general, the attacker does not necessarily know the support
(or the basis) oP/(G) and hence cannot know how to construdtiowever, in our case

we assume thaEBGen (-) = GBGengense(+) @nd this difficulty does not arise. Indeed,

a basis ofP/(G) is given by the monomialﬂ{‘;olx-di, forall dj,0 < d; < d. Inamore
general setting, we would have to discofG) as well (cf. proof of Lemma 7).

Lemma5 (M Hard < IR Hard for poly-sized g®™a("/(®))) Assume that@ )™=/ ()]
is poly(A ) sized for any R= [P, ] and Ge GBGen (1%, P,d). Then for any ppt adversary

</ against thdM problem, there exists a ppt adversag/against thdR problem such
that

(A)PolA)

im ir
AdvgzchGendense(')»dvbvmv{/ S AdvgdaGBGendense('):dvbvm-ﬂ/@ ()\ )

Conversely, for any ppt adversagy against thelR problem, there exists a ppt adver-
sary </ against thdM problem such that

Advij@,GBGen (-),dﬁb,m,z()\ )= AdViE’,GBGen (~),d,b,m.,w(/\ )-

Proof. The second statement is clearly true sifice .7 iff f mod.#7 = 0.

To prove the former direction, we construct an algorithfragainst théR problem
based on an algorithny against théM problem. The procedure is described in Algo-
rithm 4. By assumption we know that¢ (G). Whens returnsc = 1 for f — p we
have thatf — p € (G) with some non-negligible probability. Hence= z';;(l) hjg; +p
for hj € Pwhich impliesp= f mod(G) with non-negligible probability. If more than
one run of< returns a candidate, we have a contradiction and simply pick a random
candidate.

To consider resources, note that the outer loop in line 5 is itegitédimes where
#M = dimg, (P/(G)). By assumption, we have thgt" = poly(A). HenceZ runs in
time polynomial inA. If o makes at mosk queries to itsSample oracle, since we
reuse samples? also makes queries to itsSampleoracle. ad

4.1 Hardness Assumption

It is well-known [11] that the worst-case complexity of @ner bases is double ex-
ponential in the number of variables. However, in this work we are concerned with
polynomial systems over finite fields which do not achieve this worst-case complexity.
In particular, we consider zero-dimensional ideals, i.e., those ideals with a finite num-
ber of common roots. In this section, we recall a number of complexity results for these
type of systems.

Lazard [46] showed that computing thedBner basis for a system of polynomials
is equivalent to performing Gaussian elimination on the so-called Macaulay matrices

3 tor d,1 < d < D for someD.

Definition 9 (Macaulay Matrix). For a set of m polynomialsyf..., fn_1 we define

the Macaulay matrix.#2"®of degree d as follows: list “horizontally” all the degree



Algorithm 4 : IR adversaryZ from IM adversary

1 begin
2 | %receiveg1?,P);
3 L+— a;Fk«@,0;
4 M «— an ordered list of all monomia|S]i”:‘leidi for eachd;,0 < dj < d;
5 queryChallengg) to getf ;
6 | forveFiMdo
7 p—>vimfor0<i<|M|,meM;
8 k — 0O;
9 run <7 (1, P) as follows:
10 if o7 queriesSample() then
11 if k=#F then
12 querySampleg) to geth;
13 F —Fu{h}; k—k+1,
14 returnky;
15 if &7 queriesChallenge() then
16 | returnf—p;
17 if o/ callsFinalize(c) then
18 | ifc=1thenL —LuU{p};
19 p—gL,
20 call Finalize(p);
21 end

d monomials from smallest to largest sorted by some fixed monomial ordering. The
smallest monomial comes last. Multiply eagtby all monomials;tj of degree d- d;
where ¢ = ded f;). Finally, construct the coefficient matrix for the resulting system:

monomials of degree< d
(to,0, fo)
(to.1, fo)
(to2, fo)

acaulay, ’
Mym = (tro, f1)

(tm-1,0, fm-1)
(tm71.17 1:mfl)

Theorem 3. Let F={fo,..., fn_1} be a set of polynomials in P. There exists a positive
integer D for which Gaussian elimination on a%f‘;f“'aymatrices fordl<d<D
computes a Gibner basis ofF).



The K algorithm [31] can be seen as another way to use linear algebra without
knowing an a priori bound: it successively constructs and reduces matrices until a
Grobner basis is found. The same is true for thalgorithm when considered in 7F
style” [5, 1]. Consequently, the complexity is bounded by the deQraad the number
of polynomials considered at each degree. FqBR] and the matrix-Evariant [35] we
know that under some regularity assumptions all matrices have full rank which implies
that the number of rows in the matrix is bounded by the number of columns. The num-
ber of monomials up to some degreéés bounded by("!) and thus when considering
some degred the number of rows and columns of the matrices consideredshy F
also bounded above t{)')gd). Thus, knowing the degree up to whick ras to compute
provides an upper-bound on the complexity ob@mer bases. For this, the following
definition [8] is useful.

Definition 10 (Semi-Regular Sequence of Degrd®). Let f, ..., fn_1 C P be homo-
geneous polynomials of degrees d.,dn_1 respectively. We call this systenrsami-
regular sequence of degrbef:

1. <f0,...7 fm71> ;é]F[XO,...,anl].
2. Forall0O<i<mand ge Flxo,...,X-1]:

dedgg- fi) < Dandg- fj € (fo,..., fi_1) =g € (fo,..., fi_1).
We call D the degree of semi-regularity of the system.

Definition 11 (Semi-regular Sequence [8,9, 7].et fy,..., fm_1 C P be a system of
homogeneous polynomials of degree b. We call this systeem&regular sequende

the degree of semi-regularity of the system is given by the index of the first non-positive
coefficient of:

o — (1-22)m

k;) (1—-2n°

This notion can be extended to affine polynomials by considering their homogeneous
components of highest degree. It is conjectured that random systems are semi-regular
with overwhelming probability. For semi-regular sequences, we have the following
complexity result for E[8, 9, 7].

Theorem 4. Assuming that F is a semi-regular sequence, the complexity of the cur-
rently best known algorithms (i.€=g) to solve theGB problem is given by

n+D\%
%
("))
where2 < w < 3is the linear algebra constant, and D the degree of semi-regularity of

the system.

Concrete (asymptotic) bounds for the degree of semi-regularity for semi-regular se-
quences of degree 2 can be found in [8]. These bounds for the degree of regularity lead
to the following complexity estimates for Goner basis computations.



Corollary 2. Let c> 0. Then for njA) = c-n(A) or m(A) = c-n(A)? quadratic poly-
nomials in some ideaV’ C Fq(xo,...,%n—1], the Gbbner basis of# can be computed
in exponential or polynomial time in(A) respectively.

This leads us to the following hardness assumption ofsB&R/IM problems.

Definition 12 (GB/IR/IM Assumption). Let &2 be such that ) = Q(A). Assume
b—d>0,b> 1, and that niA) = c-n(A) for a constant ¢ 1. Then the advantage of
any ppt algorithm in solving th&€B/IR/IM problem is negligible as function af.

5 Symmetric Polly Cracker: Noise-Free Version

5.1 Homomorphic Symmetric Encryption

SYNTAX . A homomorphic symmetric-key encryption sch€m8KE) is specified by
four ppt algorithms as follows.

1. Gen(1%). This is the key generation algorithm, and is run by the receiver. On input a
security parameter, it outputs a (secret) E&yand a public keyK. This algorithm
also outputs the descriptions of a pair of compatible spBeeSp andMsgSp.

2. Enc(m,SK). This is the encryption algorithm, and is run by the sender. On input a
messagen, and a keysK, it returns a ciphertext.

3. Eval(co,...,c—1,C, PK). This is the evaluation algorithm, and is run by an evalua-
tor. On inputt ciphertextsco,...,c—1, a circuitC, and the public key, it outputs a
ciphertextce,,.

4. Dec(ceu, SK). This is the deterministic decryption algorithm, and is run by the re-
ceiver. On input an (evaluated) ciphertexf, a keySK, it returns either a message
m or a special failure symbal.

CORRECTNESSAN HSKE scheme is correct if for adye N, any(SK, PK) € [Gen(12)] ]}

anyt messages; € MsgSp(PK), anyc € [Enc(m,SK)], any circuitC € FunSp(PK),

and anyt ciphertexts; € [Enc(mj, PK)], and any evaluated ciphertext, € [Eval(co, ..., c—1,C, PK)] ]
we have thaDec(ceyi, SK) = C(mo,...,mi_1). We do not necessarily require correct-

ness over freshly created ciphertexts.

CoMPACTNESS A homomorphic encryption scheme is compact if there exists a fixed
polynomial bound B) so that for any key-paifSK, PK) € [Gen(1})], any circuitC €
FunSp(PK), any set of messages); € MsgSp(PK), any ciphertext; € [Enc(m;j,SK)],

and any evaluated ciphertext, € [Eval(co,...,c—1,C, PK)], the size ok, is at most

B(A +|C(mo,...,mi_1)|) (independently of the size &).

The syntax of a homomorphic public-key encryption is similar to that of the an
HSKE scheme, except that the encryption algorithm takes the public key as an input.



5.2 The Scheme

In this section we formally define the (noise-free) symmetric Polly Cracker encryp-
tion scheme. We present a family of schemes parameterised not only by the underlying
computational polynomial ring scheni®, but also by a Gibner basis generation al-
gorithm, which itself depends on a degree bodndnd a second degree boumdOur
parameterised scheme, which we writes” % 5 gggen(.)d,bs IS Presented in Figure 4.

The message spaceRg.7.

Gen;/y_GBGe,,(_)_d_b(lA): Enc(m,SK): Dec(c, SK): Eval(co,...,c-1,C,PK):
begin begin begin begin
P—3sPy; f ¢ Pop; m«—c modG; apply theAdd andMult
G «—¢ GBGen(1*,P,d); f’'— f modG; return m; gates ofC overP;
SK — (G,Pb); fef—1 end return the result;
PK « (Pb); c+— m+f; end
return (SK,PK); return c;
end end

Fig. 4. The (noise-free) Symmetric Polly Cracker scheMie€”¢’ 5 cggen (.).db-

CORRECTNESS OFEVALUATION . Consider the two ciphertexts = 5 hg jgj + mp and
c1 = Y hy jgj + my. Addition and multiplication of the two ciphertexts,c, are given
by

Co+C1 = hojgj+mo+3 hyjgj+m
= Z(ho7j+h1,j)gj+mo+m1

Co-C1= () ho,jgj+mo)- (5 hojgj+m)
= (2 hojgi)- (3 heigi) + 3 hojgi-mui+ 3 hejgj- Mo+ momy
= Zhjg,—+mom1, for someh;,

from which the homomorphic features follow. Correctness of addition and multiplica-
tion for arbitrary numbers of operands follow from the associative laws of addition and
multiplication inP.

COMPACTNESS This scheme is not compact for general circuits. Additions are free
and do not increase the size of the ciphertext, whereas multiplications square the size
of the ciphertext.

ReEMARKS. If d =1 andq(A) = poly(A) we have to seh(A) = Q(A) to rule out ex-
haustive search for the Gbner basigxg — bo, ...,X—1 — bn_1} whereb; € Fq. Mes-
sage expansion i® with b > 1. That is, encrypting a single bit results in a ciphertext of
length (":°) = &/(n°) bits. The complexity of both encryption and decryption for fresh
ciphertexts are’ (n°) ring operations.



5.3 Security

As we will show shortly, the above scheme only achieves a weak version of chosen-
plaintext security, which allows access to a limited number of ciphertexts, as defined
next.

Definition 13 (m-time IND-BCPA Security). The m-timdND-BCPA security of a (ho-
momorphic) symmetric-key encryption sche#igZ & is defined by requiring that the
advantage of any ppt adversagy given by

AV, (A) 1= 2-Pr[IND-BCPAY 5 s (V) = T| 1

is negligible as a function of the security parameterThe gaméND-BCPAy, & ¢ ¢ is
shown in Figure 5. The difference with the usliiD-CPA security is that the adversary
can query its encryption and left-or-right oracles at mogfmtimes.

Initialize (1): Encrypt(m): Left-Right (mg, m1): Finalize(c'):
begin begin begin begin

(SK,PK) «g Gen(1"); =i+l ¢ < Enc(mg,SK); | return (c=c);

c+g{0,1}; if i >m(A) then return c; end

i—0; return L; end

return PK; ¢ —g Enc(m,SK);
end return c;

end

Fig. 5. GamelND-BCPA, »~ » <. An adversary is legitimate if it calls oracleft-Right exactly
once on two message of equal lengths.

The security guarantees of this scheme are as follows.

Theorem 5. Let .« be a ppt adversary against the m-tii¢D-BCPA security of the
scheme described in Figure 4. Then there exists a ppt advergaagainst thelM
problem such that for alA € N we havé

AdvpeZEe () =2-AdV'D e () dbmz(A)-

Conversely, leteZ be a ppt adversary against ti® problem. Then there exists a
ppt adversaryZ against the m-timéND-BCPA security of the scheme described in
Figure 4 such that for alA € N we have

i ind-b:
AAV'S cagen().dbme (A) =AAV DS 4(A).

Proof. The second part of the lemma is clear: S@mpleoracle is easily simulated by
asking for encryptions of 0. Théhallengeoracle is answered by queryihgft-Right
on (0,r) wherer is a uniformly chosen element of the quotient. Now deciding ideal
membership directly leads to a distinguishing attack.

For the first part, we construct an algorith# attacking the scheme based on an
algorithm.e7 attacking thdM problem as follows.

2 We sometimes omit the subscript from schemes to ease notation. For example we have written
S PE for y'@cg.W‘GBGen(%d,b'



Algorithm 5: IM adversaryz from IND-BCPA adversaryz/

1 begin

2 | %receiveg1?,P);

3 | rune/(1,P) as follows;

4 if &7 queriesEncrypt(m) then

5 L querySamplg) to getf; returnf +m;

6 if o/ queriesLeft-Right(mgy, m) then
7 L queryChallengg) to getf; c«—g{0,1}; returnf+mg;
8 if < callsFinalize(b') then
9 L call Finalize(b = 1);
10 end

Now if the sample returned from ti@hallengeoracle toZ is uniform inP<p, then
the probability that = ¢’ is 1/2. On the other hand, if the sample is an element of the
ideal then adversaryy is run in an environment which is identical to tHéD-BCPA
game. Hence in this case the probability that ¢’ is equal to the probability that/
wins theIND-CPA game. The theorem follows. ad

As a corollary, observer that when(A) = &'(A b) one can use Corollary 2 to con-
struct an adversary which breaks thND-BCPAy, & s Security of.” Z% in polyno-
mial time. Thus we can only hope to achieve security in the bounded model for this
scheme. In the remainder of the paper we show how to overcome this security limita-
tion.

6 Symmetric-to-Asymmetric Conversion

Given the security limitation of the symmetric Polly Cracker scheme, our goal for the
rest of the paper will be to convert the scheme to a scheme which is not only fully
IND-CPA secure but also is (at least) additively homomorphic. Once we achieve this,
then it is possible to construct a public-key scheme using the homomorphic features of
the symmetric scheme by applying various generic conversions. In the literature there
are two prominent such conversions:

(A) Publish many encryptions of zeFg as part of the public key. To encrymte {0,1}
computec = 3 1.5 fi + mwhereSis a sparse subset B [57].

(B) Publish two set$ and F; of encryptions of zero and one as part of the public
key. To encryptn e {0,1} computec = 3 t.cg, fi + Y eq fj, With S andS; being
sparse subsets B andF; respectively such that the parity (& | is m. Decryption
checks whethebec(c, SK) is even or odd [53].

The security of the above transformations rests upon the (computational) indistinguisha-
bility of asymmetric ciphertexts from those produced directly using the symmetric en-
cryption algorithm.



As noted above, since” % is not IND-CPA secure the above transformations
cannot be usediHowever, one could envisage a larger class of transformations which
might lead to a fully secure additively homomorphic SKE (or equivalently an additively
homomorphic PKE) scheme. In this section we rule out a large class of such transfor-
mations. To this end, we consider PKE schemes which lie within the following design
methodology.

1. The secret key is the @lboner basi<s of a zero-dimensional idea¥ C P. The
decryption algorithm computes mod.# =c modG (perhaps together with some
post-processing such as a mod 2 operation). Thus, the message space is (essentially)
P/.#. We assume tha&/.7 is known?

2. The public key consists of elemerfts= P. We assume that the remainder of these
elements modulo the idedf, i.e.,ri := fi mod.#, are known.

3. Aciphertext is computed using ring operations. In other words, it can be expressed
asf = yNthifi +r. Here fi are as in the public keyy are some polynomials
(possibility depending offy), andr is an encoding ifP/.# of the message.

4. The construction of the ciphertext does not encode knowledgé bkyond f;.

That is, we have

N-1 N-1
hifi+r mod.¥ = hirj +r.
<i% i Ti ) i; it

Hence we have thdty Y hiri +r) € P/.# as an element d?.
5. The security of the scheme relies on the fact that elemfepteduced at step (3)
are computationally indistinguishable from random elemenBxjn

Condition 4 imposes some real restrictions on the set of allowed transformation, but
strikes a reasonable balance between allowing a general statement without ruling out too
large a class of conversions. It requires thatrtrendr do not encode any information
about the secret key. We currently require this restriction on the “expressive power”
of r; andr so as to make a general impossibility statement; #ndr produce a non-
zero element in# using some arbitrary algoritha¥, we are unable to prove anything
about the transformation. Furthermore, it is plausible that for any givea similar
impossibility result can be obtained if the remaining conditions hold (although we are
unable to prove this at present).

Note that the two transformations listed above are special linear casesrotthisdl]
ology. For transformation (A) we have thtc .# (hencer; =0),h; € {0,1} andr =m.

For transformation (B) we hawg=0if fj € Fp, rj = 1if f; € F1, h € {0, 1}, andr = 0.

To show that any conversion of the above form cannot lead 1dIBRCPA secure
public-key scheme, we will use the following theorem from commutative algebra which
was already used in [10] to discourage the use d@fld@er bases in the construction of
public-key encryption schemes.

3 As stated above, when applied tspecificscheme, the transformations might still result in
secure schemes. However, it can be shown that the security of the transformed schemes are
equivalento that of the underlying scheme.

4 For instance itd = 1 thenP/.# = Fg, or if GBGengense(-) is used then a basis f6/.7 as a

vector space are thq(x?i) for0<d <d.



Theorem 6 ([28]).Let .# = (fy,..., fm—1) be an ideal in the polynomial ring P

FXo, ..., %1, h be such thatlegh) < D, and let h— (h mod.#) = ™ hi fi, where

hi € P anddegh;fj) < D. Let G be the output of some @mer basis computation
algorithm up to degree D (i.e., all computations with degree greater than D are ignored
and dropped). Then hmod.# can be computed by polynomial reduction of h via G.

The main result of this section is a consequence of the above theorem. It essentially
states that uniformly sampling elements of the ideal up to some degree is equivalent to
compute a Gibner basis for the ideal. Note that in itself Theorem 6 does not provide
this result, since there is no assumption about the “qualityi.dience, to prove this
result we first show that the above methodology implies sampling as in Theorem 6 but
with uniformly random output. Theorem 6 then allows us to compute normal forms
which (because of the randomnessphllows the computation of a @bner basis by
Lemma 4. Note that although we arrive at the same impossibility result using Corol-
lary 2, the approach taken below better highlights the structure of the underlying prob-
lem.

Theorem 7. Let G= {qQo,...,9s-1} be the reduced @bner basis of the zero-dim-
ensional ideal in the polynomial ring P=TF[Xo, ..., X,—1] where eactdeqgi) < d.
Assume that P.# is known. Furthermore, let &= {fo,..., fn_1} be a set of poly-
nomials with knownir:= fi mod.#. Let .7 be a ppt algorithm which given F pro-
duces elements £ S h; fi +r with degf) <b, h ¢ P, b< B, degh;fj) <B, and(f
mod.#) = S hiri +r. Suppose further that the outputs .ef are computationally in-
distinguishable from random elements inyPThen there exists an algorithm which
computes a Gibner basis fors from F in & (n®®) field operations.

Proof. Writing f; = fi —r andh = SN 1 hi fi +r, we geth = SN L hi fi 4-F for somere

P/.#. Henceh satisfies the condition of Theorem 6, and we can compute the remainder
of all elements of degreleproduced bywr by computing a Gibner basis up to degree

B. From Theorem 4 we know that this coﬁs{n‘*’B) field operations wherey» < 3 is

the linear algebra constant.

We now have an algorithm which returns the remainder for arbitrary elements of
P<, with probability 1. This follows sincé is computationally indistinguishable from
random elements iR<p. More explicitly, we can generate the system parameters, in-
cluding the Gobner basis, and provide the algorithm which either an output air
a random element. We can check for the correctness of the answer using the basis.
Any non-negligible difference in algorithm’s success rate translates to a break of the
indistinguishability of the outputs af/.

Now Lemma 4 shows thdR computation is equivalent to compute adBner ba-
sis by making at mos(“gb) = 0(nP) queries to thdR oracle. (Note that the above

IR oracle has an overwhelming success probability.) Each such query costs at most

2 , : ,
("{?)” = o(n®) field operations. Therefore the overall cost of the second step is

©(n®).5 Hence the overall complexity i&’(n“B) for the first step and’(n*) for

5 In fact, this last step is unnecessary, since it can be shown that the output obtheeGbasis
computation up to degre@is a Gbner basis for7.



the second step with < B and w < 3 from which an overall complexity of’ (n®®)
follows. a

REMARK. Although the above impossibility result is presented for public-key encryp-
tion schemes, due to the equivalence result of [53], it also rules out the existence of
additively homomorphic symmetric Polly Cracker-style schemes withIN)-CPA
security.

Therefore, if for some degrde> d computationally uniform elements &%y, can
be produced using the public kdy, ..., fy_1, there is an attacker which recovers the
secret keygo, ..., 0s—1 in essentially the same complexity. Hence, while conceptually
simple and provably secure up to some bound, our symmetric Polly Cracker scheme
S PC 5 GBGen(.),d,p d0O€S NOt provide a valid building block for constructing a fully-
homomorphic public-key encryption scheme.

Our goal in the rest of the paper is to achieve NID-CPA security for a symmetric
Polly Cracker-type scheme. To this end, we introduce noisy variar@8pfR andIM
in the next section. These variants ensure that the conditions of Theorem 7 do not hold
any more. In particular, the condition that= f; mod.# are known will be no longer
valid.

7 Grobner Bases with Noise

In this section, we introduce noisy variants of the problems presented in Section 4. The
goal is to lift the restriction on the number of samples that the adversary can obtain,
and following a similar design methodology to Polly Cracker, constru¢hNar CPA-
secure scheme. Put differently, we consider problems that naturally arise if we consider
noisy encoding of messagesifi#?%. Similarly to [57, 52] we expect a problem which
is efficiently solvable in the noise-free setting to be hard in the noisy setting. We will
justify this assumption in Section 7.1 by arguing that our construction can be seen as a
generalisation of [57, 52].

The games below will be parameterised by a noise distribution. The discrete Gaus-
sian distribution is of particular interest to us.

Definition 14 (Discrete Gaussian Distribution).Leta > 0 be a real number and g
N. The discrete Gaussian distributigpy q, is @ Gaussian distribution rounded to the
nearest integer and reduced modulo g with mean zero and standard deiagion

As an example note that if = 2 theny, 2 is a Bernoulli distribution with just one
parameter & p < 1, the probability that 1 is returned.

We now define a noisy variant of the @mer basis problem. The task here is still
to compute a Gibner basis for some idead. However, we are now only given access
to a noisy sample oracle which provides polynomials which are not necessaiily in
but rather are “close” approximations to elements/afHere the term “close” is made
precise using a noise distributignon P/.~.

Definition 15 (Grobner Basis with Noise GBN) Problem). The Gibner basis with
noise problem is defined through the gaG®N » cggen(.),dbx @S Shown in Figure 6.



The advantage of a ppt algorithaa’ in solving theGBN problem is

bn . o
AV BGen () dby.r () = Pr{GBNW,GBGen(<)7d.b,x(A) = T} .

Initialize (1}, 2,d): Samplg): Finalize(G'):
begin begin begin
P—gPy; f g Pep; | return (G=G');
G g GBGen(1*,P,d); g X; end
return (1*,P); f—f—(f modG)+e
end return f;
end

Flg 6. GameGBNL@’GBGen(,)’d’b"X.

The essential difference between the noisy and noise-free versions @Btheoblem

is that by adding noise we have eliminated the restriction on the adversary to call the
Sampleoracle a bounded number of times. Stated differently, i the delta distribu-

tion, the GBN problem degenerates to tk# problem with an unbounded number of
samples. Hence, in this case tGBN problem is easy. On the other handxifis uni-

form, theGBN problem is information-theoretically hard. Thus, the choicg gfeatly
influences the hardness of tGBN problem.

REMARK. Whend = 1 the GBN problem is closely related to thdax-MQ problem,
the problem of finding an assignment fapolynomialsfy, ..., fm_1 in Fg[Xo, . .., Xh—1]
such that the majority of them evaluate to zero. In [42] it was shown that i alte
square-free it is NP-hard to approximate this problem to within a factgr-of for
a small positive number. Latter [59] proves that the minimal approximation ratio that
can be achieved in polynomial time fdfax-MQ is g. The most significant difference
between th&sBN problem ford = 1 andMax-MQ is that the latter treats polynomials
either as correct or incorrect, and no notion of “smallness” of noise exists. It follows
from the properties of the Gaussian distribution thiax-MQ oracle solves th&BN
problem ford = 1.

As in the noise-free setting, we can ask various questions about theddgzdnned
by G. One such example is solving the ideal remainder problem with access to noisy
samples from#.

Definition 16 (Ideal Remainder with Noise (RN) Problem). The ideal remainder
with noise problem is defined through the galR&l ; cggen(.).db,x @S Sshown in Fig-
ure 7. The advantage of a ppt algorithe in solving thelRN problem is

AdV'S Gagen()d by (A) = Pr[IRN:Z;,GBGen(~).d,b,X(/\) = T} —1/q(A)me=P/C).
In fact, the above two problems are equivalent as shown in the lemma below. Compared
to the noise-free version, we no longer need liieadversary to be overwhelmingly
successful, as there are no restrictions on the number of calls that can be made to the
Sampleprocedure.

Lemma 6 (RN Hard < GBN Hard). For any ppt adversaryy against thdRN prob-
lem, there exists a ppt adversa#y against theGBN problem such that

irn bn
AdVS cBen()dbx.r (A) S AV caien () dby.2(A)-



Initialize (1}, 2,d): Sample(): Challenge): Finalize(r’):
begin begin begin begin
P—gPy; f g Pep; f g Pep; r"=1f modG;
G «g GBGen (1*,P.d); e—g X; return f; return r’ =r";
return (1*,P); f—f—(f modG)+e end end
end return f;
end

Flg 7. GameIRN%GBGen(‘),d,b’X.

Conversely, for any ppt adversagy against theGBN problem, there exists a ppt ad-
versary.e/ against thdRN problem such that

bn irn
Adv%@ﬁBGen(),d.,b.x,%’(A) =AdV'Y cegen()dbx,o (A)-

Proof. To prove the first statement, we construct a procedgiggainst thecGBN prob-
lem based on an algorithry against thdRN as described in in Algorithm 6.

Algorithm 6 : GBN adversary? from IRN adversarys

1 begin
2 | %receiveg1?,P);
3 G«—
4 for0<d<bdo
5 Mg < all monomials of degred sorted ascendingly;
6 for me My do
7 if Age G s.t. LM(g) | mthen
8 for 0< j < poly(A)/e do
9 querySample) to getf;
10 run <7 (1%, P) as follows:
11 if o7 queriesSample() then
12 querySample() to get f;
13 L returnf
14 if o7 queriesChallengg) then
15 L returnf +m;
16 if o calls Finalize(r’) then
17 | setrj —r/;
18 I < majority vote orr;
19 if r ZmthenG«— GuU{m—r};
20 call Finalize(G);

21 end

Algorithm 6 is correct: Ifr = (f +m) mod.# we have that = m+ f — S hig; for
someh; € P and thus we haven—r = — 3 hjg, — f is an element of the ideal. Since we
assume thab > d we know that at some point we quemy= LM (g) for all g € G and



thus construct elementEM (g) —r) € .7 with r < LM (g) which is sufficient to ensure
G is a Gibbner basis.

Algorithm 6 is polynomial time: The outer loop in line 4 is repeated at n(n%#{) =
0 (n°) times as there are onlﬁ?gb) monomials up to degree If k is an upper bound
on the number of queries ®amplethat.c/ makes, % makes at most® - poly(A)/¢ - k
gueries to itsSSampleoracle, which is polynomial ifA if € is not exponentially small.

To prove the second statement, we construct algorithmgainst théRN problem
based on algorithn® againstGBN in Algorithm 7.

Algorithm 7: IRN adversarye” from GBN adversaryz?

1 begin

2 | o receiveg1*,P);

3 | run®(1},P) as follows:

4 if # queriesSample) then
5 querySamplg)) to getf;
6 returnf;

7 if # callsChallengg) then
8 queryChallengg) to getf;
9 | returnf

10 if # calls Finalize(G) then

11 r«— f modG;

12 | call Finalize(r);

13 end

Algorithm 7 is correct. This follows immediately from the property of e@mer
basisG to allow to compute the unique remainder of @ngnodule the idealG).

Algorithm 7 runs in polynomial time. It also makes exactly as many queries to
its Sampleoracle asZ does to its owrSampleoracle. Furthermore, the operatidén
modG' is polynomial time in the size of. 0

Similarly to the noise-free setting, the ideal membership with ndM&lf problem
is the decisional variant of tH&N (and hence th&€BN) problem. However, in the noisy
setting we have the choice between a noisy and noise-free challenge polynomial. In the
definition below noisy challenges are provided and the adversary wins the game if he
can distinguish whether an element was sampled uniformly fegror from .7 + x.

Definition 17 (Ideal Membership with Noise (MN) Problem). The ideal member-
ship with noise problem is defined throutMN 5 Gggen(.),d,p,y @S Shown in Figure 8.
The advantage of a ppt algorithet in solving thelMN problem is defined by

imn . o
Advﬁ”,GBGen(~)7d,b,x7d()‘) =2-Pr |MN9},GBGen(<).d,b7X(/\) = T} -1



Initialize (1}, 2,d): Sample(): Challenge(): Finalize(c'):
begin begin begin begin

P—gP,; f g Pep; f g Pep; | return (¢' =c);

G <4 GBGen (1*,P.d); e—sX; if c=1then end

c—¢{0,1}; f'— f modG; e—s X;

return (1*,P); f—f—f+e f'+f modG;
end return f; f—f-—f+e

end return f;
end

Fig. 8. GamelMN 5 GBGen(.),d,b,x-

Our definition of thdMN problem can be seen as an instantiation of Gentry’s ideal coset
problem [37] since both problems require distinguishing uniformly chosen elements in
P<p from those in.# 4 x. Our problem, however, assumes noisy samples since it is
clear from Section 4 that otherwise the problem is easy.

Again, we would like to have a decision-to-search reduction, that is, we would like
to have an equivalence between tR& and IMN problems. This equivalence holds
when the search space of remainders is polynomial imamely when

q(A )dimeq(Z(A)/GBGe()) _ noly() ).

The intuition behind this reduction is that the adversary can exhaustively search the quo-
tient ring and use thBMN oracle to verify his guess. Once again, a technical difficulty
arises as the adversary does not know the search 8ga€eand thus has to discover it
during the attack. Again, th&IN adversary provides an oracle to accomplish this. This

is formalised in the lemma below.

Lemma 7 (MN Hard < IRN Hard for poly-sized g“™a ™/ (®)y Assume that@ )“™a >/ ©)]
is poly(A ) sized for any Rz [P, ] and Ge GBGen (1}, P,d). Then for any ppt adversary

</ against thedMN problem, there exists a ppt adversa# against thelRN problem

such that

AV B Gen () d by, (A) SAAV'S cocen().dbx,z(A)-

Conversely, for any ppt adversa# against thdRN problem, there exists a ppt adver-
sary </ against thdMN problem s.t.

AAV'S cpcen(dby.#(A) = AV e cen() by ()
if x is efficiently distinguishable from the uniform distribution on.

Proof. The second claim holds as the adversary simply computes mod.# and
decides whetharis more likely to be frony or from the uniform distribution if®/.7.
To proof the first part of the theorem we construct an adversaggainstiRN from
adversarye againstMN in Algorithm 8. For the sake of compactness we omitted am-
plification in Algorithm 8. However, it is easy to see that we can amplify our confidence
in the outputs of (called in lines 15 and 26) by repeated callsa#to We emphasise
that this was not possible in the noise-free setting because of the limited number of
samples allowed. Hence, in the noisy setting we can remove thépaxponent from
advantage terms.

Algorithm 8 is correct. Iff —r € .# we havef —r = ¥ h;g; for someh; € P. Hence,
we havef = 5 hjg; +r. Furthermore, we have thiais minimal among all elements with



f—r e .7 (cf. lines 4, 11 and 23). Finally, both calls t& (in lines 15 and 26) can be
repeated to amplify the confidence in the result.
Algorithm 8 runs in polynomial time. By assumption

q(A)dimeq(#(A)/CBGen () _ (3 )Ml s polynomial inA .

Furthermore, line 10 can only be executed logarithmically many timés iso, Al-
gorithm 8 will execute line 22 at mo$B| = poly(A) times, once for each L) for
g € G. Hence the outer loop in line 7 is executed at myp¥t-log(A) - poly(A ) times. If
kis an upper bound on the number of calls thaimakes to itsSampleoracle,Z will
make at most 2poly(A)/e-qM! -log(A) - poly(A ) - k calls to itsSampleoracle. O

HenceGBN is equivalent tdRN andIRN is equivalent tdMN under some addi-
tional assumptions about the siB¢.#. Finally, ford = 1 (but arbitrarilyb) we show
that if we can solve th&BN problem on average, then we can also solve it for worst-
case instances. This is turn increases our confidence in hardnesG&fNheroblem.

Lemma 8 (Average-case to Worst-caselet.«” be a ppt adversary again&BN 4 cegen(.).1.0.x ]
Then there exists a ppt adversaB/which solves the Gbner basis with Noise problem
GBN % g1,y Onall instances G. That is, the basis is no longer sampled at random, but

is fixed to be a specific value G. More precisely:

bn bn
AV cBen() 1by.r D) = AIVEG 1y 5(A)-

Proof. The proof is similar to the proof of [52, Lemma 3.2]. The difference is that we
apply the transformatioly : P — P defined byL¢(f) := f(t) foranyt := (Y agiXi,..., ¥ @an—1,X)lj
with randomly chosem; j € Fg, such that the matriA = & j has full rank. That is, we
perform a random change of variables and hence re-randomise theGeBestauseA
has full rank, this transformation is invertible and we can recover the original solution
from the transformed secret by applyiﬁg: (Y &0,%i,-..,Y 8n_1,%) With & j = AL

O

REMARK. The above proof strategy does not seem to extenibtdl. This is because
there are approximately’®” secret keys compared to or]T}{‘;ol(q“ —q) < q”2 invert-
ible mapsL;. In other words, the mags do not provide sufficient re-randomisation.

7.1 Hardness Assumptions and Justifications

In this subsection we investigate the hardness ofBN, IRN, andIMN problems. We
first consider th&BN problem and relate it to the well-establishadE problem [52].
Then, we discuss the relation between@BN problem and various approximate GCD
problems [57]. Third, we discuss the special cqse 2 by relating theGBN problem

to the well-knownMax-SAT problem. Finally, we consider known attacks against the
GBN problem. We start by recalling th&VE problem.



Definition 18 (Learning with Errors ( LWE) Problem). The Learning with Errors
problem is defined though gam®&/E,,  , shown in Figure 9. The advantage of a ppt
algorithm.e7 in solvingLWE is

Iwe . -4
Advn’q%%(/\) =Pr LWqu’X()\) =T|.

Initialize (17 ): Sample(): Finalize(s):
begin begin begin

n—n(); a«—s Zg; | retumn s=¢;

S+g Zg; e—g X; end

return (1*,n); b—e+3yas;//<as>+e
end return (a,b);

end

Fig. 9. GamelWEnq,y.

From the definition of WE it is easy to see th&BN can be considered as a non-linear
generalisation of WE if g is a prime. In other words, we have equivalence between
these problems if we considere=d = 1 in GBN. This is formalised in the next lemma.

Lemma9 (LWE Hard = GBN Hard for d =1,b= 1). Let g be a prime number. Then
for any ppt adversary? against theGBN problen? with b= d = 1, there exists a ppt
adversary# against thel WE problem such that

bn wi
AV cBGen() 11 y.r(A) = AQVRG x (D).

Proof. We construct an adversagg against thd WE problem based on an adversary
</ against theGBN problem ford = 1 andb = 1. Algorithm 4 initialises.«7 with P.
Whenever calls itsSampleoracle,Z queries its owrSampleoracle to obtair(a, b)
wherea = (ag,...,an-1). It returnsy ajx; — b to «7. This is a validGBN sample of
degreeb = 1. TheChallengeoracle is answered similarly. Whe calls itsFinalize
on G, sinced = 1, we may assume thé&tis of the form[Xp — o, ..., Xn—1 — Sh—1] with
s € Fq. Algorithm £ terminates by calling itEinalize oracle ons= (s, ...,S-1).
Adversary# is successful whenevey is. Indeed, fromy a;x; —b = 0 it follows
thaty a;s = € and hence thad satisfies the WE sampleq(a, Y ais + €). Finally, it is
easy to see tha® runs in polynomial time and uses only polynomial many samples.
O

In the noise-free setting we assume that solving systems of equations of degree
greater than 1 is harder than solving those of degree 1. More generally, we assume
that equations of degrde> b’ are harder to solve than those of degpedntuitively,
equations of degrelg can be seen as those of degbeghere the coefficients of higher

6 Here # is a distribution which returnB = Fqg[Xo,...,Xa—1] with g as in thelWE game and
GBGen(+) is an algorithm which returng — So, . . ., Xn—1 — Sh—1] for somes; € Fq which is
the only choice fod = 1.



degree monomials are set to zero. However, formalising this intuition for an adversary
which expects uniformly distributed equations of degrseems futile since producing
such equations is equivalent to solving the system by Theorem 7.

In the noisy setting this equivalence (i.e., Theorem 7) between sampling and solving
no longer holds. However, we still need to deal with the distribution of noise. One
strategy to show that difficulty increases with the degree pararéteo allow for an
increase of the noise level in the samples. We formalise this below.

Lemma 10 (GBN Hard for 2b = GBN Hard for b). Let N= (”’gb). For any ppt
adversary/ against theGBN problem at degree b with noisg, g, there exists a ppt
adversary# against theGBN problem at degre@b with noise)(\mo,zq q such that

gbn _ gbn
Advyﬂ,cscen<-),d,b,Xa,q,gf(A) = AdV@,GBGen(-),d,zb,xmazq_q,.@(}\)

Proof (Sketch)Let fo=73 jho jgj+epandfi = 3;hy;gi+e1 be samples frorﬁBN‘(}szBGen(.m_,b’)(o,yq 1
We have

for f1 = (Y hojgj +eo) (Y hwigi+e)
] [
= (3 Mojgj)- (3 huigi+e1)+eo- (Y higi) +ever
J I i

=5 (3 huigi+e1)hojg +eo- (Y huigi) +eoer
b ]

(> (hijho;gi+erhoj)gj) + > eohyigi+ever
I

] I
3 hjgj + eoer for someh;.
]

It follows that fo 1 := fo- f1 is @ polynomial of degreelwhose error terngge; follows

a discretised Normal product distribution with mean 0 and standard deviafigh
More generally, letf; ; := f; - fj, with f, f; samples frorrGBNL@‘GBGen(.)7d_,2b‘Xa_q, be

a product of polynomials. The elemerfig are not random elements of degrezi@

. In particular, allf; j factor into at least two polynomials. Létbe a sample from
GBN 2 GBGen(-).d,20,xa o+ TO “destroy” this algebraic structure we may consider the sum

m-1

f= Z) f2i 211+ h for somem e N.
i=

The addition oth — which has a small error term — ensures thi indeed an element
of .# and not just#2. In order to estimate the required magnitudenofo renderf
indistinguishable from uniforne .# at degree B, we write f; = 3 cymy for ci € Fyq
andm, monomials of degreg b. Hence, we can writd; - f; = ZE:_ol cikmk fi. We now
apply the leftover hash lemma for each valukdfidependently. That is, we consider
the affine groufs = IFQ of coefficient vectors of polynomialsy - fi and apply a vari-
ant of a special case of the leftover hash lemma [43], i.e.,Xha}bigi has statistical
distance bounded from above RY|G|/q’ = \/q-N/d’ to the uniform distribution for




bi € [-9/2,0/2) andg; € G. For¢ = N this magnitude is exponentially small. Finally,

we note that the parallel applications of the leftover hash lemma are independent be-
cause of the independencef. Hence,f = Zi’\:ol f2i 2i+1 is a indistinguishable from

a random element it¥ of degree B.

Finally, we need to consider the distribution on the noise. By the Central Limit
Theoremzi’\‘;o1 & 21 converges to a discretised normal distribution centred at zero and
with standard deviation of/ Na?g?. More precisely, the valug * ez 21| is smaller
than samples frommazq_’q with very high probability. Hence, we may add noise from

the appropriate noise distributigyf (i.e., the difference of the two distributions) fo
such thatf has an error term distributed closeXtoyzq o

This means thaf = Zi'\l;()l f2i 211 +h+efor e—g X' is a random-looking sample
for GBN 2,68Gen () 4.D.X fia2qq” It follows from the definition of ideals that the Gloner

basis for polynomials fz 211 + his the same as that fo, f2i 1. From this, it is
easy to see that the adversagywill return a Gbbner basis which is valid for samples
presented tar . ad

On the other hand, if we do not want to tolerate this noise increase, another strategy
would be to consider a “sparse” variant(GBNg,GBGen(,),db’Xa‘q whereSamplereturns
samples whose higher-degree terms only involve a subset @f Jagriables similar to
[15]. This strategy is pursued in Appendix A.

RELATION TO THE APPROXIMATE GCD PROBLEM. The GBN problem forn=1 is

the approximate GCD problem ovEg[x]. Contrary to the approximate GCD problem
over the integers (cf. [57]), this problem has not yet received much attention, and hence
it is unclear under which parameters it is hard. However, as mentioned in Section 3, the
notion of a Gbbner basis can been extendedfwy, . .., xn—1], which in turn implies a
version of theGBN problem ovelZ. This can be seen as a direct generalisation of the
approximate GCD problem iA.

THE CASE g = 2. Recall that ifb = d = 1 we have an equivalence with th&VE
problem (or the well-known problem of learning parity with nois®K) if g = 2).

More generally, ford = 1 we can reduc&lax-3SAT instances taGBN instances by
translating each clause individually to a Boolean polynomial. Howevevar-3SAT

the number of samples is bounded and hence this reduction only shows the hardness
of GBN with a bounded number of samples. Still, thed@mer basis returned by an
arbitrary algorithme7 solving GBN using a bounded number of samples will provide

a solution to theMax-3SAT problem. Vice versa, we may converGBN instance for

d = 1 to aMax-SAT instance (more preciseRartial Max-Sat) by running an ANF to

CNF conversion algorithm [6].

KNOWN ATTACKS. Finally, we consider known attacks to understand the difficulty of
the GBN problem. Recall, that ib =1 Lemma 9 states that we can solve th&E
problem if we can solve th€BN problem. The converse also applies. Indeed, for any
b > d andd = 1 the best known attack against tGBN problem is to reduce it to the
LWE problem similarly to the linearisation technique used for solving non-linear sys-
tems of equations in the noise-free setting. Net (”gb) be the number of monomials

up to degreé. Let .7 : P — IFQ be a function which maps polynomials ihto vec-



tors in IFQ by assigning thé-th component of the image vector the coefficient of the
i-th monomiale M<p. Then, in order to reduc€BN with n variables and degrdeto
LWE with N variables, reply to eachWE Samplequery by calling thecBN Sample
oracle to retrievef, computev = . (f) and return(a,b) with a = (wy_1,...,v1) and

b = —vp. When theLWE adversary querieEinalize on s, query theGBN Finalize
with [xo — So,. .., Xn—1 — Si—1]. Correctness follows from the correctness of linearisa-
tion in the noise-free setting [4]. Furthermore, th&E problem inN variables and
with respect to the discrete Gaussian noise distributigyg is considered to be hard

if o> %max(%,Z*ZVN'qu'Ogd) for an appropriate choice @ which is the quality

of the approximation for the shortest vector problem. With current lattice algorithms
0 = 1.01 is hard and D05 infeasible [49].

Perhaps the most interesting attack WYiE from the perspective of this work is that
due to Arora and Ge [4] which reduces the problem of solving linear systems with noise
to the problem of solving (structured) non-linear noise-free systems. We may apply this
technique directly t&GBN, i.e., without going toLlWE first, and reduce it t&B with
largeb. However, it seems this approach does not improve the asymptotic complexity
of the attack. Finally, certain conditions to rule out exhaustive search for the noise (and
hence a noise-free system) must be imposed.

We conclude this section by explicitly stating our hardness assumption.

Definition 19 (GBN/IRN/IMN Assumptions).Letb,d e Nwithb>d > 1. Let%? be a
polynomial ring distribution ang, o be the discrete Gaussian distribution. Suppose the
parameters ng, and g (all being a function of) satisfy the following set of conditions:

L n>VA;

2. (aq)"" ~ 2" so exhaustive search over the noise or the secret key space is ruled
out;

3. ag > 8 as suggested in [47]; and

4. For N:= ("{P), and 5 := 1.005 we havea > 3. max{é,Z‘zvN'qu'og‘s}, and

hence the best known attacks againstlit\& problem are ruled out [49, 54].

The advantage of any ppt algorithm in solving BN, IRN, andIMN problems with
the above parameters is negligible as a functioi of

8 Polly Cracker with Noise

In this section we present a fulfND-CPA secure Polly Cracker-style symmetric en-
cryption scheme. Our parameterised schee? % 4 5 Gagen(.),db,x» 1S Shown in
Figure 10. Here we represent elementsFipas integers in the interval-|3],[3]].

This representation convention is also used in the definition of noise. All the com-
putations are performed in the rifgas generated b@en. Furthermore we assume
that gcd2,q) = 1. This condition is needed for the correctness and the security of our
scheme. The message spac®&4galthough we remark that this can be generalised to
other small fields).

CORRECTNESS OFEVALUATION . We restrict our attention td = 1. This greatly sim-
plifies the discussion of correctness below due to a simpler notion of “size” of the



noise. That is, we define the size of the noise as laighe distance to zero over the
integers. Addition and multiplication of the two ciphertexts= 3 ho jgj + 2ep + mg
andcy = 5 hy jgj + 2e; +my are given by

Co+c1 =Y hojgj +2e0+ Mo+ hy jgj +2e1 +my
= > (hoj+hyj)gj +2(eo+e1) + (mo+my)
Co-C1 = () ho,jgj +2e0+mo) - (H hajgj+2e1+my)
= (D hojgj)- (3 hejgj+2e1+m)
+ (2e0+mo) - (H hyjgj)
+ (4e0e1 + 2eomy + 2€1Mo + Mormy ) i
=3 hjgj +2(2eve1 + eom + eamo) + momy for some;

The homomorphic features follow. Correctness of addition and multiplication for arbi-
trary numbers of operands follow from the associative laws of addition and multiplica-
tion in P up to overflows.

Gen » GBGen ().dby (11): Enc(m,SK): Dec(c, SK): Eval(co, ...,q_1,C, PK):
begin begin begin begin

P—gPy; f g Pp; m «— ¢ modG; applyAdd andMul gates

G g GBGen(1},P,d); f'— f modG; m—m mod2; of C overP;

SK — (G,P,b, x); fef—f; end return the result;

PK — (P.b,X); €—s X; end

return (SK,PK); ce—f+2e+m
end return c;

end

Fig. 10. The Symmetric Polly Cracker with Noise schette?” ¢4 5 GBGen(.).d.b.x-

PERMITTED CIRCUITS. Circuits composed ohdd andMul gates can be seen as multi-
variate Boolean polynomials invariables oveif,. We can consider the generalisation
of this set of polynomials td&y (i.e., the coefficients are iig). In order to define the
set of permitted circuits (which will be parameterised dy> 0) we first embed the
Boolean polynomials into the ring of polynomials ov&r For x4 q we have that the
probability of the noise being larger th&arqg is < exp(—k?/2). We now say that a
circuit is valid if for any(sp,...,5-1) with § <taqg we have that the outputs are less
thanq for some parametdr This restriction ensures that no overflows occurs when
polynomials are evaluated ovEy. Section 10 discusses how to setindq in order to
allow for evaluation of polynomials of some fixed degyee

COMPACTNESS Additions do not increase the size of the ciphertext, but they do in-
crease the size of the error by at most one bit. Multiplications square the size of the
ciphertext and the bit-size of the the noise by approximatelySag;) bits. Section 9
contains a discussion on how to trade ciphertext size with noise. The theorem below
states the security properties of the above scheme.



Theorem 8. Let.«/ be a ppt adversary against thRD-CPA security of the scheme in
Figure 10. Then there exists a ppt adversagyagainst theMN problem such that for
all A € Nwe have

ind- i
AQV'E5E s (A) =2 AV cpeen() dby.2(A)-

Proof. We construct an algorithr® against thdMN problem based onry attacking
theIND-CPA security of the scheme in Algorithm 9.

Now if the sample returned from th@hallenge oracle to# is uniform in Py,
then the probability that = ¢’ is 1/2. On the other hand, if the sample is a noisy
element of the ideal, then adversasy is run in an environment which is identical to
theIND-CPA game. Note that since g2 q) = 1, multiplications by 2 at lines 6 and 10
do not affect the distribution of. Hence in this case the probability that ¢’ is equal
to the probability that wins theIND-CPA game. The theorem follows. a

The above theorem together with the recent results in [53] which establish the equiv-
alence of symmetric and asymmetric homomorphic encryption schemes leads to the first
provably secure public-key encryption scheme from assumptions relatedim&r
bases for random systems. This provides a positive answer to the challenges raised by
Barkee et al. [10] (and later also by Gentry [37]). We note here that the transformation
— as briefly described in Section 6 — only use the additive features of the scheme and
does not require full homomorphicity.

9 Trading Degrees for Noise

The product of two polynomials of degrbeés a polynomial of degreetf and hence the

size of the ciphertext squares if two ciphertexts are multiplied together. In this section,
we discuss how to reduce polynomials of degréet@ polynomials of degreé by
performing a proxy re-encryption. Proxy re-encryption allows to transform a ciphertext
intended for a partyA to a ciphertext for a parti3 with the help of a (unidirectional)
re-encryption keya_.g.

We discuss how one can achieve the above functionality for our scheeie? =
Fq[Xo, ..., %n—1] and suppose th&a = {Jo, ...,0n-1} andGg = {ho,...,h,_1} are two
(possibly distinct) Gobner bases for idealga C P and .#g C P. Finally, suppose
P/.7n = P/ #g. To re-encrypt a ciphertext intended 1@ under keyGg we generate
the re-encryption kega g as in Algorithm 10. This key will then be used in Algo-
rithm 11, which is the actual re-encryption algorithm.

The central ideal behind these algorithms is the equivalence between different rep-
resentations of elements By/.#. While for the most part of this work we identify
elements inP/.# with elementsf mod.#, Algorithms 10 and 11 make use of dif-
ferent representations of elementsHA.#. For example, ifx+ 1 is an element of a
Grobner basig&a both f = x andr = —1 represent the same elemenPis, since f

7 Since the construction only uses additions, this feature also applies teEdased encryp-
tion scheme as previously observedhtitp://xagawa.net/pdf/20100120_SCIS_PRE.
pdf



modGa =T, i.e.,x modGp = —1. Hence, if we are interested Ry .#a (our messages
live in P/.#) we can usef andr interchangeably. That is, for sonfe= S ¢imy with
monomialsm; and coefficients; € IFq, we can compute the first decryption step, i.e.,
m+2e=f mod.#a, asy (cimy mod.#a). Furthermore, since/.#a = P/ .#g, we may
encrypt the encoded message- 2e for Gg by computing

/= (f modﬂA)+f~:z(cim mod.Za) + f = m+2e+ f for f € 7.

Hence, we get that’ mod.#g = f mod.7a.

Now, using the keYsa_.g We may re-encrypt a ciphertektunderGp to a ciphertext
f/ underGg using Algorithm 11. All elements if6a_.g are of degree at mobt Hence,
the degree of the output of Algorithm 11 is at mbsEurthermore, given a polynomial
of degredd’ = 2b, this algorithm performs at most log (”Eb/) additions of polynomi-
als. If e is the maximal noise in any of the polynomials@a _.g, reducing the degree
from 2b to b adds a noise of at most. On top of that, Algorithm 11 will “copy” the
noise fromf, and hence, it does not reduce it: we are trading degree for noise.

To consider security, we first discuss re-encryption under the same keG4.e.,
Gg. If b’ = b, the keyGa_.a can be constructed publicly given access to encryptions of
zero by requesting a fresh encryption of zdérand :storingﬁAﬂA[Zj -m| = 2. m+ f.
Since(f mod.#) = 2efor some small error terrait holds thatf +2/-m mod.7 =
(2)-m mod.#) + 2e. Hence,Ga . is a correct re-encryption key which can be gen-
erated given only access to encryptions zero, i.e., no additional information is leaked.
This implies limited key-dependent message security for our scheme in the standard
model; limited in the sense that only the least significant bit of the constant term of
each Gobner basis element is encrypted.

However, this argument does not go throughtfar b. While it is easy to construct
elementsf which satisfyf mod.# ~ 21 -m mod.# for ma monomial of degree b
for anyone with access to encryptions of zero, it is not easy to produce such elements
with degree< b and small noise.

Yet, for Gp — Gg with Ga # Gg security of this re-encryption can be shown under
thelMN assumption. That is, any adversary breakindg iie-CPA security of this game
with access to the re-encryption k&a_.g can be turned into an adversary breaking
against théMN problem. A full proof for this is presented for the special caseVgE
in [18] where this technique was independently proposed.

10 Parameters

In this section we give concrete suggestions for various parameters that are involved in
our scheme. These suggestions are based on the currently best known attacks — instead
of theoretical hardness results — in order to stimulate research on the concrete hardness
of our underlying assumptions.

We denote by the maximal degree of the Boolean polynomials corresponding to
the circuits that we wish to support, and bythe security parameter as before.

One restriction on our choice of parameters is imposed by the requirement that de-
cryption error probability on evaluated ciphertexts should be low. Since additions have



a small effect on the noise, we concentrate on the degree of polynomials. This means
that in order to allow for polynomials of degree upgicand at most a 1% decryption
error probability, we must have Pe”| > q/2] < 1/100. Hence (cf. Section 8) we need
to ensure that

exp(k?/2) > 100 andk(aq) < 1/2- {/4.

Another set of restrictions comes from the conditions stated in our intractability
assumption in Definition 19. For this, we make the somewhat arbitrary cholre-&f
and denote bN = ("5?) the number of monomials in a fresh ciphertext. We set the
parameters in a way which keepgsndependent ob and allow for dependency oh
and i only. (This is compatible with the definitional framework that we have set up.)
We pick
g~ A% anda = 1/(AHlog?(A)VA)

This allows us to simplify the condition needed to ensure the hardness af\tke
problem in Definition 19 to:

A (u+3) |ng()\) < % .22\/(”52)([.1-»-2) logA log 1.005

Based on these inequalities, we give example choice for parameters in Table 1. In
this table we have also included whether the theoretical baupd- 2v/N is satis-
fied. This inequality allows quantum reductions between W& problem and certain
lattice-based problems to go through.

11 Reference Implementation

We implemented our scheme using the Sage mathematics softwafeBBhugh this
implementation is not efficient, the code not only concretely demonstrates the correct-
ness of the scheme, it also shows that if basic mathematical structures are available, it
can be easily implemented.
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Algorithm 8 : IRN adversaryZ from IMN adversarye

1 begin
2 | SAreceiveg1!,P);
3 M,G — @,9;
4 Gen() := a function takingn > 0 and returning a of generator producwng Fg for
lex. sorted;
5 gencm < Gen(|M|),1;
6 queryChallengg) to getf;
7 while Truedo
8 v« gen);
9 if v=_1 then
10 M —MU{cm};
11 Cm < the min. monomiaimwith m¢ M andm¢ (LM (G));
12 gen— Gen(|M|);
13 v — gen);
14 r—cm+yvimfor0<i<|M|,m eM;
15 run <7 (1*,P) as follows:
16 if o7 queriesSample() then
17 L querySamplg) to geth and returrh;
18 if o7 queriesChallenge() then
19 L querySampleg) to geth; returnh+r;
20 if o7 callsFinalize(c') then
21 if ¢ = 0then
22 G+« Gur;
23 Cm < the min. monomiamwith m¢ M andm¢ (LM (G));
24 gen— Gen(|M|);
25 else
26 run <7 (1}, P) as follows:
27 if o7 queriesSample() then
28 querySampleg) to geth;
29 L returnh;
30 if o/ queriesChallengg) then
31 L returnf —r;
32 if o7 calls Finalize(b) then
33 if b=0then
34 L | call Finalize(r);

35 end




Algorithm 9: IMN adversaryZ from IND-CPA adversarye/

1 begin

2 | %receiveg1?,P);

3 | rune/(1,P) as follows;

4 if & queriesEncrypt(m) then
5 querySample)) to getf;

6 return 2f +m;

7 if o7 queriesLeft-Right(mg, my) then
8 c«—¢{0,1};

9 queryChallengg) to getf;
10 return 2f +m ;

11 if o7 callsFinalize(c') then

12 | call Finalize(c=c');

13 end

Algorithm 10: Generating the re-encryption key

Input: Gp — a Gibbner basis

Input: fo,..., fm_1 —encryptions of zero und&g
Input: b’ —a bound on the degree of polynomials
1 begin

2 Ga_B < 9,

3 for me M<y do

4 m < m modGa;

5 for 0< j < [logy(q/2)] do

6 S«—g¢ asparse subset @,...,m—1];
7 fe—3sfs

8 Ga_g[2 -m — f42i.nt;

9 return Ga_.g;
10 end




Algorithm 11: Re-encryption

Input: f —a polynomial inP of degree at modf
Input: Ga_.g — a re-encryption key from ke@a to keyGg

1 begin
2 f/ —0;
3 for me f do
4 ¢ < the coefficient inf of mrepresented as an integer(in| 3], [ J];
5 m —0;
6 for 0< j < [logy(q/2)] do
7 if the j-th bit of|c| is setthen
8 L L nf<—nf+GA_,B[2j~m];
9 if c < Othen
10 L m— —1-m;
11 fl— ' +n;
12 return f/;
13 end
[ Alp[ n[ N a glag > 2v/N[ciphertextsize
40 1j|15( 136 0.00558254200346408 1999 Rlse =~ 0.2kbytes
40 2(|20| 231} 0.000139563550086602 92893 False =~ 0.5kbyteg
40| 3||24| 325 3.48908875216505e-6 3842401 Rlse ~ 0.9kbyteg
80( 1||16| 153 0.002797408580781715 12227 Tue = 0.3kbyteg
80| 2||21| 2530.00003496760725977119 594397 Rlse =~ 0.6kbytes
80 3||26| 378 4.37095090747149e-7 54771113 Blse =~ 1.2kbyteg
128 1|[23| 300 0.00180384382955752 29501 Tue = 0.6kbytes
128 2||22| 276/0.0000140925299184181 4025909 Tue = 0.8kbyteg
128 3||27| 406 1.10097889987642e-7 456626039 Tue =~ 1.4kbytes
256 1{|41| 903 0.000976562500000000 81971 Tue = 1.6kbyteg
256 2|(38| 780 3.81469726562500e-6 28191413 Tue = 2.5kbyteg
256 3||42| 946 1.49011611938477e-85005092413 lue = 3.2kbyteg
512 1{|68{2415 0.0005456070842488Y9 347539 Tueg =~ 5.2kbytes
512 2||65(2211 1.06563883642359¢e-6 239518691 Tug =~ 8.2kbyteg
512 3||69[2485 2.08132585238983er85332320813 fuel ~ 11.8kbytes

Table 1.Example parameter choices foe= 2, k = 1/2log(100)
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Alternative Strategy for Hardness of Higher Degrees

LetV be asubset ofxo, ..., Xn-1}. We denote BEBN', cogen(.) d i nyv @9ame which
is similar to theGBN 4 cggen(.),d b,y 9@8Me except that ti@ampleprocedure is replaced
by theSamplé procedure given in Figure 11.

proc. Samplé():

begin
f —3 Pgb/?
f/ g P<p, restricted to the variables W;
E—g X
f—f+f —(f+f modG)+e
return f;

end

Fig. 11.Proceduresamplé€ returning sparse samples.

Now, if V| =logA we can exhaustively search for a configuration which will satisfy

these terms. This is formalised in the next lemma for the daséd. but for anyy.

Lemma 11 (GBN Hard for b’ = GBN’ Hard for b > b’ if [V| = log(A)). For any ppt
adversarys/ againstGBN’ at degree k> I/, there exists a ppt adversarg against



GBN at degree bsuch that

gbn’ _ gbn
AV agen() 10 bx v (A) = AV coien ) i x .2 (D)

where|V| =log(A).

Proof. We construct eGBN adversaryZ at degredy from a GBN’ adversaryer at
degreeb > b’ in Algorithm 12. Wheng queriesFinalize on G # {1} this means that

Algorithm 12: GBN adversaryZ for b from GBN' adversarye for b > b/
1 begin

2 | %receiveg1?,P);

3 replaceb’ by b and rune (1%, P) as follows;
4 |V| < log of the number of variables i®;

5 V «—g¢ nvariables fronP;
6

7

8

9

forve IB‘Q” do
lv—{Mo—Vo,...Viy|-1—Vv|-1}:
run.<Z (1%, P) as follows:

if &7 queriesSamplé() then

10 querySampleg) to getf;

11 f/ ¢ P<q restricted to the variablés;
12 f/ — ' — (f' modly);

13 | returnf + f’:

14 if o/ queriesChallenge() then

15 queryChallengg) to getf;

16 fl—g P4 restricted to the variablés;
17 f' — ' — (' modly);

18 | retunf + f’:

19 if o7 callsFinalize(G) then

20 | if G# {1} then call Finalize(G);

21 end

our guess was correct and that the actual solution agrees with our guess. Ghsis,
the GiBbner basis we are looking for. Siné| = log(A) we have thaFg/‘ is poly(A)
and the outer loop is repeated pEly times. Hence, Algorithm 12 only uses resources
polynomial inA. ad



