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FGb is a C library for computing Gröbner bases and polynomial system solving with algebraic
computations. FGb is freely distributed for academic use only. It can be used as a C library
through a C program or through its interface with the Maple computer algebra system. Most
of the functions are available for these two usage modes.

This tutorial presents FGb through its Maple interface. The various functionalities compute
Gröbner bases or related objects which are useful for solving polynomial systems with algebraic
methods (symbolic computation). The structure of the library is described in [4].

Most of the functions provided by FGb are based on the state-of-the-art algorithms for Gröbner
bases such as the F4 and F5 algorithms [2, 3]. These algorithms are based on linear algebra
routines which are given in [5]: coefficients of the polynomials are stored in row vectors according
to a monomial ordering ; matrices are formed by taking such row vectors obtained by multiplying
the input polynomials with monomials up to some degree and performing row echelon form
computations.

In order to use FGb, it is not necessary to know more about Gröbner bases and monomial
orderings than the few lines below. However for an expert usage, learning about such notions
is really useful: such knowledge is crucial to know how to use efficiently these functions. The
interested reader can refer to [1, Chapter 2].

The main monomial orderings provided by FGb are the degree reverse lexicographical ordering
(denoted by DRL(vars)) and an elimination ordering DRL(vars1) > DRL(vars2) (here we mean
that variables in vars1 are eliminated). You can use FGb without knowing the definition of the
DRL-ordering. Gröbner bases are special families of polynomials that generate the same ideal
(i.e. set of algebraic combinations) of the input polynomials. Their special properties allow to
extract various useful information about the solution set of the input polynomial system except
a description of the projection of the solution set on the space spanned by a subset of the input
variables.

For this latter task, you may use the aforementioned elimination ordering: eliminating some
variables leads to compute the projection on the space spanned by the other variables. In the
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(common) case where the solution set (in some algebraic closure) is finite, special change of
ordering algorithms are used [7, 6].
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1 Getting started

The package FGb must be loaded in your maple session with the following command.

> with (FGb) ;

All FGb commands available through its Maple interface appear. These commands provide
functionalities to solve polynomial systems with coefficients in a field K through Gröbner bases
computations.
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The fields which are supported are the prime fields Z/pZ with p < 216 or the field Q of rational
numbers.

The first task that FGb allows to tackle is the following: given a polynomial system F with
coefficients in a field K as above, decide if it has solutions in the algberaic closure of K. To
do that, we compute a Gröbner basis using the main function of the FGb package which is
fgb gbasis. The Gröbner basis is [1] if and only if there is no solution in the algebraic closure.

# The f o l l o w i n g toy example i s known as Katsura−3 problem .

> F:=[2∗x+2∗y+2∗z+t−1, 2∗x∗z+zˆ2+2∗y∗ t−y ,
2∗x∗y+2∗y∗z+2∗z∗ t−z , 2∗x∗z+2∗y∗ t+zˆ2−y ,
2∗xˆ2+2∗yˆ2+2∗zˆ2+2∗ tˆ2−t ] ;

#F cons ide r ed with r a t i o n a l c o e f f i c i e n t s

> f g b g b a s i s (F , 0 , [ ] , [ x , y , z , t ] ) ;

[135230915∗ t ˆ4+2604491−216024792∗ t ˆ3+3881504∗y∗ t−11331680∗ z∗ t+
126340686∗ t ˆ2−537232∗y+5402944∗z−31985976∗ t ,
2494∗y∗ t ˆ2−57+210∗ t ˆ3−2640∗y∗ t +244∗z∗ t−453∗ t ˆ2+718∗y−104∗z+270∗t ,
43∗ z∗ tˆ2−1+15∗ t ˆ3+8∗y∗ t−44∗z∗ t−17∗ t ˆ2−4∗y+11∗z+7∗t ,
2∗yˆ2+y∗ t−2∗z∗ t−y+z , 8∗y∗z−1−16∗y∗ t−4∗z∗ t−5∗t ˆ2+8∗y+4∗t ,
4∗ zˆ2+1+8∗y∗ t+8∗z∗ t+5∗t ˆ2−4∗y−4∗z−4∗t , 2∗x+2∗y+2∗z+t−1]

#F cons ide r ed with c o e f f i c i e n t s in Z/(65521 Z)
> f g b g b a s i s (F , 65521 , [ ] , [ x , y , z , t ] ) ;

[ t ˆ4+59696+55447∗ t ˆ3+9849∗y∗ t +24675∗z∗ t +7763∗ t ˆ2+37061∗y+53842∗z+10802∗ t ,
y∗ t ˆ2+42586+1734∗ t ˆ3+34362∗y∗ t +18863∗z∗ t +28084∗ t ˆ2+30265∗y+47814∗z+39670∗ t ,
z∗ t ˆ2+59426+25904∗ t ˆ3+48760∗y∗ t +59425∗z∗ t +27427∗ t ˆ2+41141∗y+1524∗z+42665∗ t ,
yˆ2+32761∗y∗ t +65520∗z∗ t +32760∗y+32761∗z ,
y∗z+8190+65519∗y∗ t +32760∗z∗ t +40950∗ tˆ2+y+32761∗ t ,
zˆ2+49141+2∗y∗ t+2∗z∗ t +49142∗ t ˆ2+65520∗y+65520∗z+65520∗ t ,
x+32760+y+z+32761∗ t ]

We deduce from the above computations that the system F has solutions (in C and in the
algebraic closure of Z/65521Z). Let us now consider the intersection of the complex solutions
of F and the hyperplane defined by x + 2y + 3z + 4t− 5 and check if it has solutions.

> F:=[ op (F) , x+2∗y+3∗z+4∗t −5] :

> f g b g b a s i s (F , 0 , [ ] , [ x , y , z , t ] ) ;

[ 1 ]
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We deduce that this intersection is empty over C. The same conclusion holds over the algebraic
closure of Z/65521Z.

> f g b g b a s i s (F , 65521 , [ ] , [ x , y , z , t ] ) ;

[ 1 ]

We continue this section with additional examples. All of them can be found in maple files of
the directory examples provided with the distribution of FGb.

1.1 Finitely many solutions.

Let us see how to check if a given polynomial system has a finite number of complex solutions.

#The system below i s obta ined by e l i m i n a t i n g the v a r i a b l e t
#from the Katsura−3 problem above
> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;

#We s t a r t by computing a Grobner b a s i s f o r the o rde r ing DRL(x>y>z )

> gb:= f g b g b a s i s (F , 0 , [ ] , [ x , y , z ] ) :

[27675164∗ z ˆ4−7969044∗ z ˆ3+3377930∗x∗z +5745964∗y∗z +5766613∗ zˆ2+
90629∗y−1779826∗z ,
1276∗x∗zˆ2+1201∗ zˆ3−200∗x∗z−313∗y∗z−420∗zˆ2−22∗y+93∗z ,
116∗y∗zˆ2−28∗zˆ3+22∗x∗z+44∗y∗z+23∗zˆ2+3∗y−14∗z ,
20∗xˆ2+2+66∗x∗z+24∗y∗z+49∗zˆ2−12∗x−7∗y−18∗z ,
2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
4∗yˆ2+6∗x∗z+8∗y∗z+7∗zˆ2−y−2∗z ]

#Next , we c a l l the func t i on f g b h i l b e r t : i t r e tu rn s
#a polynomial in u and an i n t e g e r which i s 0 i f f the
#system d e f i n e s a f i n i t e s e t .

> h i l b := f g b h i l b e r t ( gb , 0 , [ ] , [ x , y , z ] , ’ t ’ ) :

[ uˆ3+3∗uˆ2+3∗u+1, 0 ]

> h i l b [ 2 ] ;

0
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When the complex solution set is finite (which is the case here), one may want to get the number
of solutions (counted with multiplicities). This is done again using the output of hilb

> subs (u=1, h i l b ) ;

Let p be a prime number. It is remarkable that for any choice of p outside a finite subset of the
set of prime numbers, running the above computations in the field Z/pZ yields the dimension
and degree estimates. This is very useful for large examples since computations in Z/pZ are
much faster when the size of p is less than the word machine. This is what we do below with
p = 65521.

#The system below i s obta ined by e l i m i n a t i n g the v a r i a b l e t
#from the Katsura−3 problem above
> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;

#We s t a r t by computing a Grobner b a s i s f o r the o rde r ing DRL(x>y>z )
> gb:= f g b g b a s i s (F , 65521 , [ ] , [ x , y , z ] ) :

[ z ˆ4+52916∗ zˆ3+1449∗x∗z+56695∗y∗z+35868∗zˆ2+9919∗y+13038∗z ,
x∗z ˆ2+32402∗ z ˆ3+42722∗x∗z+45238∗y∗z+11091∗zˆ2+3389∗y+54173∗z ,
y∗z ˆ2+47446∗ z ˆ3+28242∗x∗z+56484∗y∗z+59308∗z ˆ2+27677∗y+23723∗z ,
xˆ2+58969+45868∗x∗z+52418∗y∗z+36039∗z ˆ2+39312∗x+22932∗y+58968∗z ,
x∗y+65519∗x∗z+65520∗y∗z+65519∗z ˆ2+32761∗z ,
yˆ2+32762∗x∗z+2∗y∗z+16382∗z ˆ2+16380∗y+32760∗z ]

#Next , we c a l l the func t i on f g b h i l b e r t :
#i t r e tu rn s a polynomial in u
> h i l b := f g b h i l b e r t ( gb , 65521 , [ ] , [ x , y , z ] , ’ u ’ ) :
#and an i n t e g e r which i s 0 i f f the system d e f i n e s a f i n i t e s e t .

[ uˆ3+3∗uˆ2+3∗u+1, 0 ]
> h i l b [ 2 ] ;

0

> subs (u=1, h i l b [ 1 ] ) ;

8

In the above example, the polynomial system has a finite number of complex solutions. This can
be seen on the Gröbner basis: the set of leading monomials of the polynomials in the Gröbner
basis contains pure powers of all variables.
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For large examples, it is not so easy to extract these leading monomials of the polynomials in
the Gröbner basis. The function fgb gbasis lm is useful because it makes this easy. Besides, the
leading monomials in the basis are the only ones we really need to run fgb hilbert.

> gb:= f g b g b a s i s l m (F, 65521 , [ ] , [ x , y , z ] ) :

> gb [ 2 ] ;

[ z ˆ4 , x∗z ˆ2 , y∗z ˆ2 , x ˆ2 , x∗y , y ˆ2 ]

> h i l b := f g b h i l b e r t ( gb [ 2 ] , 65521 , [ ] , [ x , y , z ] , ’u ’ ) ;

[ uˆ3+3∗uˆ2+3∗u+1, 0 ]

At this point, we know that the above system F has finitely many complex solutions and we
know how to count the number of complex solutions (with multiplicities). To go further we
may want to know what is the projection of the solution set of F on the x-axis. Hence we want
to compute a polynomial in Q[x] This is done by eliminating the variables y and z using the
function fgb gbasis elim.

> xpol := f g b g b a s i s e l i m (F, 0 , [ y , z ] , [ x ] ) ;

[3470240∗xˆ8+1−4582784∗xˆ7+2519968∗xˆ6−750640∗xˆ5+
139000∗xˆ4−19216∗xˆ3+2202∗xˆ2−146∗x ]

Finally, we may want a nice representation of this complex solution set in terms of univariate
polynomials. More precisely, we would like to express the z- and y-coordinates with respect to
the z-coordinates of the complex solution set. This is done with the function fgb matrixn.

> param:= f g b m a t r i x n r a d i c a l (F , 0 , [ z , y , x ] ) ;

On this example, the concrete output is

[
6940480∗ z−56720∗xˆ7+25352∗xˆ6+12756∗xˆ5−14940∗xˆ4+5626∗xˆ3−
936∗xˆ2+32∗x+5,
13880960∗y−1343680∗xˆ7+1848208∗xˆ6−1016328∗xˆ5+284036∗xˆ4−
42824∗xˆ3+3676∗xˆ2−222∗x+9,
3470240∗xˆ8−4582784∗xˆ7+2519968∗xˆ6−750640∗xˆ5+139000∗xˆ4−
19216∗xˆ3+2202∗xˆ2−146∗x+1
]

We set below c1 = 6940480, c2 = 13880960

q1 = −56720x7 + 25352x6 + 12756x5 − 14940x4 + 5626x3 − 936x2 + 32x + 5,

q2 = −1343680x7 + 1848208x6 − 1016328x5 + 284036x4 − 42824x3 + 3676x2 − 222x + 9
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and

q3 = 3470240x8−4582784x7+2519968x6−750640x5+139000x4−19216x3+2202x2−146x+1.

Note that q3 has degree 8 which is the number of complex solutions counted with multiplicities
found using fgb hilbert.

This output must me interpreted as follows: the complex solution is defined by the following
representation

q3(x) = 0, z = q1(x)/c1q0(x), y = q2(x)/c2q0(x)

where q0 = ∂q3/∂x
deg(q3)

. Note that isolating the roots of q3 with sufficient accuracy allows to isolate
the roots of the system.

1.2 Infinitely many solutions.

We focus now on what can be done for systems with infinitely many complex solutions; in this
case, one says that the system has positive dimension. The following commands which, as above,
use fgb hilbert allow to compute the dimension d and the degree of the ideal generated a given
polynomial system.

> F:=[ xˆ2−2∗x∗u+uˆ2+yˆ2−2∗y∗v+vˆ2−1, u∗y+v∗u+v∗x , xˆ2+yˆ2+vˆ2+uˆ2−1, w∗v−1] :

> gb:= f g b g b a s i s (F , 0 , [ ] , [ u , v ,w, x , y ] ) :
> h i l b := f g b h i l b e r t ( gb , 0 , [ ] , [ u , v ,w, x , y ] , ’ z ’ ) ;

[ 2∗ zˆ3+5∗zˆ2+4∗z+1, 1 ]

#Degree
> deg := subs ( z=1, h i l b [ 1 ] ) ;

12
#Dimension
> dim:= h i l b [ 2 ] ;

1

The above degree is the number of points counted with multiplicity obtained when augmenting
the polynomial system with d generically chosen linear forms.

> forms :=[ seq ( randpoly ( [ u , v ,w, x , y ] , degree =1, dense ) , i =1. . dim ) ] :
> gb0:= f g b g b a s i s ( [ op (F) , op ( forms ) ] , 0 , [ ] , [ u , v ,w, x , y ] ) ;
> h i l b0 := f g b h i l b e r t ( gb0 , 0 , [ ] , [ u , v ,w, x , y ] , ’ z ’ ) ;

[ 2∗ zˆ3+5∗zˆ2+4∗z+1, 1 ]
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#Degree
> deg0 := subs ( z=1, h i l b 0 [ 1 ] ) ;

12
#Dimension
> dim0:= h i l b0 [ 2 ] ;

0

As aleady mentioned, when running all the above computatations over a prime field Z/pZ for a
prime p chosen after a finite subset of prime numbers.

Eliminating variables is useful in positive dimension: it allows to compute a subset of polynomials
which define, up to taking closure, the projection of the complex solution on the space of the
remaining variable. Elimination orderings are crucial for this operation.

> gb:= f g b g b a s i s (F , 0 , [ u , v ,w] , [ x , y ] ) :

[ uˆ2−2∗w∗yˆ3+w∗y−2∗xˆ2+y ˆ2 , v∗u+2∗v∗x+2∗w∗x∗yˆ2−w∗x+x∗y ,
vˆ2−1+2∗w∗yˆ3−w∗y+3∗x ˆ2 , w∗v−1, 2∗wˆ2∗x∗yˆ2−wˆ2∗x+u+w∗x∗y+2∗x ,
2∗wˆ2∗yˆ3−wˆ2∗y+v+3∗w∗yˆ2−w+3∗y , x∗u+xˆ2−y ˆ2 ,
u∗y−v∗x−2∗w∗x∗yˆ2+w∗x−x∗y , v∗xˆ2+2∗w∗yˆ4−w∗yˆ2+2∗xˆ2∗y+yˆ3−y ,
y∗v−xˆ2+y ˆ2 , 2∗w∗yˆ5−w∗yˆ3+xˆ4+xˆ2∗yˆ2+yˆ4−y ˆ2 , w∗xˆ2−w∗yˆ2−y ,
xˆ6−xˆ2∗yˆ2+y ˆ6 ]

Note that in the above example, one can extract expressions of u, v, w with respect to x, y by
looking at the polynomials which depend only on w, x, y, v, x, y and u, x, y (they have degree 1
in w, v and u respectively). This is not always true but rather common.

Note also when one wants to compute only the projection and when computations are performed
over Q, it is faster to use fgb gbasis elim.

> pro j := f g b g b a s i s e l i m (F, 0 , [ u , v , x ] , [ x , y ] ) ;

[ xˆ6−xˆ2∗yˆ2+y ˆ6 ]

This function can be used for the implicitization of curves or surfaces:

> F1 :=[ x+77+45∗u+34∗v−94∗uˆ2−67∗v∗u−95∗v ˆ2 ,
y−2∗u+4∗v−5∗v∗u+40∗vˆ2−5∗uˆ3−4∗uˆ2∗v ,
z+38∗v+50∗uˆ2+75∗vˆ3−11∗uˆ4−80∗u∗vˆ3−14∗v ˆ 4 ] :

> impl1 := f g b g b a s i s e l i m (F1 , 0 , [ u , v ] , [ x , y , z ] ) :

Though the runtime for the above call is less than a second on a modern computer, its output
is too large to be printed here: one polynomial of degree 12 with 169 monomials.
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Using fgb gbasis with an elimination ordering for the implicitization problem is not appropri-
ate: since it computes the whole Gröbner basis, the runtime is much larger than the one of
fgb gbasis elim.

2 Installation instructions

Requirements:

• Unix/Linux: libc?

• Mac OS: xcode?

3 Basic commands
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3.1 fgb gbasis(F,char,vars1,vars2,opts)

Input description.

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 is a list of variables (vars1 may be empty);

• vars2 is a list of variables ;

• opts is an optional argument (see Section 4).

Assumptions.

• F has either rational coefficients or coefficients in a prime field of characteristic < 216 ;

• All variables in F should appear either in vars1 or in vars2 (else an error is raised) ;

• vars1 and vars2 must have an empty intersection.

Output description. The command returns a Gröbner basis of the ideal generated by F with

respect to the elimination ordering DRL(vars1)>DRL(vars2).

Examples

> F:=[ x , x∗y−1] ;
> f g b g b a s i s (F , 0 , [ ] , [ x , y ] ) ;

[ 1 ]
> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;
:
> f g b g b a s i s (F , 9001 , [ ] , [ x , y , z ] ) :
[ z ˆ4+1476∗ zˆ3+4294∗x∗z+8165∗y∗z+3056∗zˆ2+8840∗y+6072∗z ,
x∗zˆ2+1574∗ zˆ3+7195∗x∗z+684∗y∗z+1608∗zˆ2+5742∗y+2730∗z ,
y∗zˆ2+8380∗ zˆ3+8846∗x∗z+8691∗y∗z+5975∗zˆ2+388∗y+4190∗z ,
xˆ2+8101+6304∗x∗z+7202∗y∗z+4953∗zˆ2+5400∗x+3150∗y+8100∗z ,
x∗y+8999∗x∗z+9000∗y∗z+8999∗zˆ2+4501∗z ,
yˆ2+4502∗x∗z+2∗y∗z+2252∗zˆ2+2250∗y+4500∗z ]
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3.2 fgb gbasis lm(F,char,vars1,vars2,opts)

Input description.

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 is a list of variables ;

• vars2 is a list of variables ;

• opts is an optional argument (see Section 4).

Assumptions.

• F has either rational coefficients or coefficients in a prime field of characteristic < 216 ;

• All variables in F should appear either in vars1 or in vars2 (else an error is raised) ;

• vars1 and vars2 must have an empty intersection.

Output description. The command returns a list of two elements [gb, lm] where

• gb is a Gröbner basis of the ideal generated by F with respect to the elimination ordering
DRL(vars1)>DRL(vars2).

• lm is the list of leading monomials of the polynomials in gb

Examples

> f g b g b a s i s l m ( [ x , x∗y−1] , 0 , [ ] , [ x , y ] ) ;

[ [ 1 ] , [ 1 ] ]

> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;
:
> f g b g b a s i s l m (F, 9001 , [ ] , [ x , y , z ] ) :
[ [ z ˆ4+1476∗ zˆ3+4294∗x∗z+8165∗y∗z+3056∗zˆ2+8840∗y+6072∗z ,
x∗zˆ2+1574∗ zˆ3+7195∗x∗z+684∗y∗z+1608∗zˆ2+5742∗y+2730∗z ,
y∗zˆ2+8380∗ zˆ3+8846∗x∗z+8691∗y∗z+5975∗zˆ2+388∗y+4190∗z ,
xˆ2+8101+6304∗x∗z+7202∗y∗z+4953∗zˆ2+5400∗x+3150∗y+8100∗z ,
x∗y+8999∗x∗z+9000∗y∗z+8999∗zˆ2+4501∗z ,
yˆ2+4502∗x∗z+2∗y∗z+2252∗zˆ2+2250∗y+4500∗z ] ,
[ z ˆ4 , x∗z ˆ2 , y∗z ˆ2 , x ˆ2 , x∗y , y ˆ 2 ] ]
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3.3 fgb gbasis elim(F,char,vars1,vars2,opts)

Input description.

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 is a list of variables ;

• vars2 is a list of variables ;

• opts is an optional argument (see Section 4).

Assumptions.

• F has either rational coefficients or coefficients in a prime field of characteristic < 216 ;

• All variables in F should appear either in vars1 or in vars2 (else an error is raised) ;

• vars1 and vars2 must have an empty intersection.

Output description. The command returns a Gröbner basis with respect to the ordering

DRL(vars2) of the ideal obtained by eliminating vars1 from the one generated by F.

Examples

> F:=[ x+28∗u−16∗v−30∗u∗v , y−72+87∗uˆ2−47∗u∗v , z+48−53∗u+28∗u ˆ 2 ] :
> f g b g b a s i s e l i m (F, 0 , [ ] , [ ] ) ;

[865928∗xˆ2∗ z +618110485632−1105440∗x∗y∗z+352800∗yˆ2∗ z +3434760∗x∗zˆ2−
2192400∗y∗z ˆ2+3406050∗ z ˆ3+41564544∗xˆ2−68684672∗x∗y+29716736∗yˆ2+
234388201∗x∗z−243520594∗y∗z +653661404∗ z ˆ2+4461842352∗x−5321983120∗y+
39759575952∗ z ]

> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] :
> f g b g b a s i s e l i m (F, 9001 , [ ] , [ ] ) ;

[ z ˆ7+8361∗ zˆ6+7278∗ zˆ5+6894∗ zˆ4+1051∗ zˆ3+4625∗ zˆ2+5358∗ z ]
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3.4 fgb hilbert(gb,char,vars1,vars2,v)

Input description.
• gb is a list of polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 is a list of variables ;

• vars2 is a list of variables ;

• v is an used variable.

Assumptions.
• char is the charactistic of the field over which gb has been computed (char is 0 when rational

coefficients have been used, else it is a prime field of characteristic < 216) ;

• gb is a Gröbner basis with respect to the ordering DRL(vars1)>DRL(vars2) ;

• v is an used variable.

Output description. The command returns a list of two elements

• the first one is a univariate polynomial P which is the Hilbert polynomial of the ideal
generated by gb ;

• the second one is a natural integer dim which is the dimension of the ideal gb.
Note that, as a consequence, the Hilbert series of the ideal generated by gb is given by P

(1−v)dim .

Examples

> f g b h i l b e r t ( [ 1 ] , 0 , [ ] , [ x , y ] ) ;

> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y , 2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;
:
> l gb := f g b g b a s i s l m (F, 9001 , [ ] , [ x , y , z ] ) :
> f g b h i l b e r t ( lgb [ 1 ] , 9 0 0 1 , [ ] , [ x , y , z ] , ’ u ’ ) ;

[ uˆ3+3∗uˆ2+3∗u+1, 0 ]
> f g b h i l b e r t ( lgb [ 2 ] , 9 0 0 1 , [ ] , [ x , y , z ] , ’u ’ ) ;

[ uˆ3+3∗uˆ2+3∗u+1, 0 ]
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3.5 fgb interface()

Input description. This function rakes no argument

Output description. It returns a list of 5 elements as follows:

• an integer giving the maple release number ;

• a string giving the operating system ;

• an expression "FGb modp" = <number> where <number> gives the build number of FGb modp.

• an expression "FGb INT" = <number> where <number> gives the build number of FGb INT.

• an integer giving the FGb maple interface release number.

Examples

> f g b i n t e r f a c e ( ) ;

[ 1 6 . 0 1 , ”APPLE UNIVERSAL OSX” , ”FGb modp” = 12801 , ”FGb INT” = 12802 , 1 . 6 2 ]
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3.6 fgb matrixn radical(F,char,vars,num,opts)

Input description.

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars is a list of variables ;

• num is a natural number ;

• opts is an optional argument (see Section 4).

Assumptions.

• F has either rational coefficients or coefficients in a prime field of characteristic < 216 ;

• vars is the list of variables appearing in F.
The assumptions below are satisfied in generic coordinates (i.e. they are true up to substituting
the last variable with a random linear combination of vars) and checked by the function.

• The solution set Z of F (in the algebraic closure) is finite ;

• The set of polynomials that vanish on Z is in the so-called shape lemma position, i.e. for
the lexicographical ordering, the Gröbner basis has the following form:

vars[1]− t1(vars[n]), vars[2]− t2(vars[n]), . . . , vars[n− 1]− tn−1(vars[n]), tn(vars[n]).

• Another technical assumption is requested on the DRL-Gröbner basis of the set of polyno-
mials that vanish on Z (see [6]).

Output description. A list of polynomials of the form

c1vars[1]− q1(vars[n]), c2vars[2]− q2(vars[n]), . . . , cn−1vars[n− 1]− qn−1(vars[n]), qn(vars[n])

where the ci’s are coefficients and the qi’s are univariate polynomials in vars[n]. These polyno-
mials describe the set Z ′ defined by

vars[i] =
qi(vars[n])

ciq0(vars[n])
for 1 ≤ i ≤ n− 1, qn(vars[n]) = 0

where q0 = ∂qn/∂vars[n]
deg(qn)

.

When num is 0, Z ′ equals Z, else Z ′ is the set of points of multiplicity num in Z.
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Examples

> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;

> param:= f g b m a t r i x n r a d i c a l (F , 0 , [ z , y , x ] ) ;

[
6940480∗ z−56720∗xˆ7+25352∗xˆ6+12756∗xˆ5−14940∗xˆ4+5626∗xˆ3−
936∗xˆ2+32∗x+5,
13880960∗y−1343680∗xˆ7+1848208∗xˆ6−1016328∗xˆ5+284036∗xˆ4−
42824∗xˆ3+3676∗xˆ2−222∗x+9,
3470240∗xˆ8−4582784∗xˆ7+2519968∗xˆ6−750640∗xˆ5+139000∗xˆ4−
19216∗xˆ3+2202∗xˆ2−146∗x+1
]

3.7 pseudo fgb normalForm(gb,F,char,vars1,vars2)

Input description.

• gb is a list of polynomials ;

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 is a list of variables ;

• vars2 is a list of variables ;

Assumptions.

• gb and F have either rational coefficients or coefficients in a prime field of characteristic
< 216 ;

• All variables in gb and F should appear either in vars1 or in vars2 (else an error is raised) ;
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• vars1 and vars2 must have an empty intersection.

• gb is a Gröbner basis with respect to the ordering DRL(vars1)>DRL(vars2).

Output description. A list of the form

[c1, p1, c2, f2, . . . , ck, pk]

where k is the cardinality of F the ci’s are coefficients and the pi’s are polynomials such that pi
is the normal form of cifi (where fi is the i-th element of F.

Examples

>

4 Advanced usage

We describe now options, given as elements of a set, that are available for fgb gbasis, fgb gbasis lm,
fgb gbasis elim and fgb matrixn radical and more advanced functions for expert users.

4.1 Options

Options are given as a set of the following form

{< string1 >=< num1 >, . . . , < stringk >=< numk >}

where < stringi > is a string and < numi > is a natural number.

Verbosity : “verb”=<num>.
Here <num> is an integer in {0, 1, 2, 3} and it controls the verbosity of FGb. Its default value
is 0.

Informations that are printed are related to the size of the matrices appearing during the Gröbner
bases reconstructions, progress in linear algebra routines (for Gröbner bases computations and
algorithms for change of orderings) and rational reconstruction.

Size of matrices : “index”=<num>.
Recall that algorithms for Gröbner bases in FGb are based on row echelon form computations.
The default limit value for the number of rows/columns matrices generated by FGb is limited
to 500 000.

That may not be sufficient for very large computations and the user can increase this value (up
to the limit of the available memory on its computer). Note also that increasing this value when
it is not necessary may slow down the run time of FGb.
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Degree restrictions : “verb”=<num>.
Recall also that algorithms for computations of Gröbner bases in FGb are performed by increas-
ing degree until the requested Gröbner basis is obtained.

One can limit the degree up to which the computations are run. The limit degree is instantiated
to the integer <num>.

Example:

> f g b g b a s i s (F , 0 , [ ] , {\ s f vars } , { ‘ ‘ verb ’ ’=3 , ‘ ‘ index ’ ’=1000000} ) :

4.2 Advanced functions

4.3 fgb multi(F1,F2,vars1,vars2,vars3,opts)

Input description.

• F1 and F2 are lists of multivariate polynomials with rational coefficients ;

• vars1, vars2 and vars3 are lists of variables ;

• num is a natural number ;

• opts is an optional argument (see Section 4).

Assumptions.

• F1 and F2 have either rational coefficients or coefficients in a prime field of characteristic
< 216 ;

• All variables appearing in F1 or F2 must appear in either vars1 or vars2 ;

• vars1 is the list of variables appearing in F2 ;

• vars1 and vars2 must have an empty intersection.

Output description. This function simulates the following sequence of computations provided

that all assumptions for fgb matrix radical are satisfied by the system newF below.

> gb:= f g b g b a s i s e l i m (F1 , 0 , vars1 , [ op ( vars2 ) , op ( vars3 ) ] ) :
> newF:=[ op ( gb ) , op (F2 ) ] :
> gb:= f g b g b a s i s e l i m (newF , 0 , vars2 , vars3 ) :
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The function returns gb.

Examples

> pol :=3844∗xˆ4−10092∗xˆ2∗yˆ2+2804∗xˆ2∗y∗z+5041∗xˆ2∗ zˆ2+1496∗x∗yˆ2∗z−
2414∗x∗y∗zˆ2+9409∗yˆ4−14162∗yˆ3∗ z+5618∗yˆ2∗ zˆ2+1488∗xˆ2∗y+8804∗xˆ2∗ z+
7216∗x∗yˆ2−20792∗x∗y∗z+11360∗x∗zˆ2−10864∗yˆ3+10964∗yˆ2∗z−2720∗y∗zˆ2−
6944∗xˆ2−10168∗x∗y+9920∗x∗z+26738∗yˆ2−25822∗y∗z+6400∗zˆ2−9744∗y+7569;

> F1:=F1 :=[L∗ d i f f ( pol , x)−1 , L∗ d i f f ( pol , y)−1 , L∗ d i f f ( pol , z )−1] :

> F2 :=[ po l ] :

> param:= fgb mul t i (F1 , F2 , [ L ] , [ x , y ] , [ z ] ) :

4.4 fgb matrixn radical2(F1,F2,char,vars1,vars2,num,opts)

Input description.

• F1 and F2 are lists of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars1 and vars2 are lists of variables ;

• num is a natural number ;

• opts is an optional argument (see Section 4).

Assumptions.

• F1 and F2 have either rational coefficients or coefficients in a prime field of characteristic
< 216 ;

• All variables appearing in F1 or F2 must appear in either vars1 or vars2 ;

• vars1 is the list of variables appearing in F2 ;

• vars1 and vars2 must have an empty intersection.

Output description. This function simulates the following sequence of computations provided
that all assumptions for fgb matrix radical are satisfied by the system newF below.
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> gb:= f g b g b a s i s e l i m (F1 , char , vars1 , vars2 ) :
> newF:=[ op ( gb ) , op (F2 ) ] :
> param:= f g b m a t r i x r a d i c a l (newF , char , vars2 , num ) :

The function returns param.

Examples

> pol :=3844∗xˆ4−10092∗xˆ2∗yˆ2+2804∗xˆ2∗y∗z+5041∗xˆ2∗ zˆ2+1496∗x∗yˆ2∗z−
2414∗x∗y∗zˆ2+9409∗yˆ4−14162∗yˆ3∗ z+5618∗yˆ2∗ zˆ2+1488∗xˆ2∗y+8804∗xˆ2∗ z+
7216∗x∗yˆ2−20792∗x∗y∗z+11360∗x∗zˆ2−10864∗yˆ3+10964∗yˆ2∗z−2720∗y∗zˆ2−
6944∗xˆ2−10168∗x∗y+9920∗x∗z+26738∗yˆ2−25822∗y∗z+6400∗zˆ2−9744∗y+7569;

> F1:=F1 :=[L∗ d i f f ( pol , x)−1 , L∗ d i f f ( pol , y)−1 , L∗ d i f f ( pol , z )−1] :

> F2 :=[ po l ] :

> param:= f g b m a t r i x n r a d i c a l 2 (F1 , F2 , 0 , [ x , y , z ] , 0 ) :

> param1:= f g b m a t r i x n r a d i c a l 2 (F1 , F2 , 0 , [ x , y , z ] , 1 ) :

> param2:= f g b m a t r i x n r a d i c a l 2 (F1 , F2 , 0 , [ x , y , z ] , 2 ) :

4.5 fgb matrixn(F,char,vars,opts)

Input description.

• F is a list of multivariate polynomials ;

• char is a natural number indicating the characteristic of the ground field; for computations
over the rationals, char is 0 ;

If char is 0 computations are performed over Q else they are performed over Z/charZ.

• vars is a list of variables ;

• num is a natural number ;

• opts is an optional argument (see Section 4).

Assumptions.

• F has either rational coefficients or coefficients in a prime field of characteristic < 216 ;

• vars is the list of variables appearing in F.
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The assumptions below are satisfied in generic coordinates (i.e. they are true up to substituting
the last variable with a random linear combination of vars) and checked by the function.

• The solution set Z of F (in the algebraic closure) is finite ;

• The set of polynomials that vanish on Z is in the so-called shape lemma position, i.e. for
the lexicographical ordering, the Gröbner basis has the following form:

vars[1]− t1(vars[n]), vars[2]− t2(vars[n]), . . . , vars[n− 1]− tn−1(vars[n]), tn(vars[n]).

• Another technical assumption is requested on the DRL-Gröbner basis of the set of polyno-
mials that vanish on Z (see [6]).

Output description. A list of polynomials of the form

c1vars[1]− q1(vars[n]), c2vars[2]− q2(vars[n]), . . . , cn−1vars[n− 1]− qn−1(vars[n]), qn(vars[n])

where the ci’s are coefficients and the qi’s are univariate polynomials in vars[n]. These polyno-
mials describe the set Z ′ defined by

vars[i] =
qi(vars[n])

ciq0(vars[n])
for 1 ≤ i ≤ n− 1, qn(vars[n]) = 0

where q0 = ∂qn/∂vars[n]
deg(qn)

; hence when there is no multiple root for F, Z = Z ′.

Examples

> F:=[2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
2∗x∗y−2∗y∗z−4∗x∗z−4∗zˆ2+z ,
2∗x∗z+zˆ2−4∗x∗y−4∗yˆ2−4∗y∗z+y ,
10∗xˆ2+10∗yˆ2+10∗zˆ2+16∗x∗y+16∗x∗z−6∗x+16∗y∗z−6∗y−6∗z +1] ;

> param:= fgb matr ixn (F , 0 , [ z , y , x ] ) ;

[6940480∗ z−56720∗xˆ7+25352∗xˆ6+12756∗xˆ5−14940∗xˆ4+5626∗xˆ3−
936∗xˆ2+32∗x+5,
13880960∗y−1343680∗xˆ7+1848208∗xˆ6−1016328∗xˆ5+284036∗xˆ4−
42824∗xˆ3+3676∗xˆ2−222∗x+9,
3470240∗xˆ8−4582784∗xˆ7+2519968∗xˆ6−750640∗xˆ5+139000∗xˆ4−
19216∗xˆ3+2202∗xˆ2−146∗x+1]
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